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Abstract

There appears to be very little written about the greatest prime factor (gpf)
function, and especially it’s generating functions. This paper provides a numerical,
visual survey of it’s exponential generating function, illustrating its remarkable
symmetry properties.

Introduction
A cursory search of the Internet indicates that very little is known[1] about the greatest
prime factor function gpf(n) that returns the largest prime divisor of n. Some values
and additional references are given in the OEIS A006530[2]. I was unable to find
anything at all discussing the typical analytic formulations of this sequence, such as
the ordinary generating function

G(z) =
∞

∑
n=1

gpf(n)zn

or the exponential generating function

E (z) =
∞

∑
n=1

gpf(n)
zn

n!

Thus, I thought I would do a bit of numerical exploration. The exponential generat-
ing function exhibits a variety of remarkable symmetric and fractal properties. On the
one hand, this is perhaps not surprising, as fractal symmetries are common in number
theory.[3, 4] On the other hand, the actual figures make it clear that this function is quite
unlike anything else. This paper is a numerical and visual exploration of the exponen-
tial generating function, exposing it’s patterns of self-similarities. It offers essentially
no analytic results; despite the “obvious” structure, obtaining exact results appears to
be difficult.1

1Some of the figures in this text show richer detail, and are particularly striking when they are mag-
nified. Due to space limitations, they are kept rather small in this text. Larger images can be found at
https://linas.org/art-gallery/gpf/gpf.html
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Figure 1: Phase of the Ordinary Generating Function

This figure shows the phase (arctan) of the function G(z); that is, it shows ϕ (z) where
exp iϕ (z) = G(z)/ |G(z)|. The color coding is such that red indicates a phase of +π ,
green is a phase of zero, and black is a phase of −π . The sharp red-black transitions
are where the phase wraps around by 2π . These transition lines can only terminate
on zeros and on poles; which is which can be identified by whether the phase wraps
counterclockwise or clockwise. Here, the lines that terminate inside the unit circle
all terminate on zeros; the edge of the circle is ringed with both poles and zeros. The
exterior of the unit circle is colored green: there is no analytic extension of G(z) outside
of the unit circle.

Phase Plots
Figure 1 is a phase plot of the ordinary generating function G(z) for complex z. This
function has a radius of convergence of one, with what appears to be essential singu-
larities scattered all about the unit circle. The function is not obviously any kind of
modular form, but is suggestive of some sort of theta function. That is, there is some
vague fractal self-similarity-ish behavior, which is very typical of any sort of modular
form or function;[5] however, its not in any "obvious" form that e.g. the j-function or
the Eisenstein functions would have. On the other hand, it seems that just about any
“random” sequence has a similar general appearance, and so there is not much intuitive
information that can be extracted from this figure.

Figure 2 shows the a phase plot of the exponential generating function E (z) on the
complex z plane. This function appears to be entire! The width of the figure is 120;
that is, it graphs the domain −60 ≤ x,y ≤ +60 for z = x+ iy. The rays all appear
to terminate on zeros of the function; there do not appear to be any poles anywhere

2



(except at infinity, of course). But then, the absence of poles should be clear, as gpf is
bounded: gpf(n)≤ n and so one would expect E (z) to be bounded by ez.

The red-black color transition in both figures 1 and 2 indicates a location where
the phase changes by 2π . Such color transition lines can only ever terminate on poles
and zeros. Since phases can only wrap counterclockwise around a zero, and clockwise
around a pole, such transition lines can never connect two zeros; they can only connect
a zero to a pole. Since E (z) has only zeros on the (finite) complex plane, the transition
lines seen in figure 2 must necessarily extend, more-or-less radially, out to infinity,
where they meet an essential singularity. This simple effect explains most of the visual
structure of this image.

Figure 2: Phase of the Exponential Generating Function

This figure shows the phase plot of E (z) on the complex z plane. The color scheme
and it’s interpretation is the same as in Figure 1. The width of the figure is 120; that
is, it graphs the domain −60 ≤ x,y ≤ +60 for z = x+ iy. It is convenient to define
gpf(0) = 0 and gpf(1) = 1, so that the zero at z = 0 is a simple zero.

The regularity of the thickness of these phase-fingers immediately provides a hy-
pothesis about the zeros. The figure reveals that the zeros seem to be more or less
uniformly distributed about the complex plane. In order for the fingers to remain of
uniform width, this implies that the number of zeros within a circle of radius r = |z|
must be proportional to the circumference of the circle. Were this not the case, the fin-
gers could not stay at a quasi-uniform width. Thus, visual evidence applied to Cauchy’s
argument principle suggests that

N (r) =
1

2πi

∮
|z|=r

E ′ (z)
E (z)

dz = O (r)
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Figure 3: Zeros of the Exponential Generating Function

Both figures show the same domain as in figure 2; that is, are bounded as −60≤ x,y≤
+60 for z = x+ iy. Both figures show the magnitude |E (z)|e−|z|, but with different
color scales. On the left, the color map is such that red corresponds to values of 1.0
or greater, and green to values around 0.5. On the right is exactly the same image,
but the color map scaled by 0.24. That is, red corresponds to values of 4.17 ≈ 1/0.24
or greater, and green to values of about 2. The color scheme on the right exposes a
clustering of the zeros that is less evident on the left.

where N (r) is the number of zeros of E (z) within a circle of radius r = |z|. This is
explored in greater detail in a later section, where the numerical evidence suggests that

N (r) = r+O (logr)

as r→ ∞ (or, at least, for values of r that are several orders of magnitude larger).

Zeros
Figure 2 suggests that the zeros are fairly uniformly distributed; however it is fairly
cluttered, so it’s hard to tell quite where they really are. If there is regularity, it is
obscured. Thus, figure 3 is used to explicitly expose the location of zeros as black dots
in the image. The figure shows the absolute value |E (z)|. Observe that E (z) diverges
as e|z| for large z; thus the color scale is selected to show E (z)e−|z|to make the zeros
more easily visible.

The zeros in figure 3 cluster in a suggestive way. Perhaps one should zoom out.
This is shown in figure 4. This exposes a new and interesting feature: rays! Lanes that
are free of any zeros! Rays for the cyclic groups Z2 and Z3 are clearly visible, and with
some peering, the rays for Z5 can be seen as well. There’s a hint of Z7. Notably absent
(or just hard to see?) are rays for Z4 . This seems to lead to a natural conjecture that
zeros only occur on rays for Zp for p prime.
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Figure 4: Zoom-out of the EGF

Both figures show the magnitude |E (z)|e−|z|; the one on the left is for −360 ≤ x,y ≤
+360 while the one on the right is for −2160 ≤ x,y ≤ +2160. The big blue-black
blobs in the left image are five different zeros, fairly close to each other. The color
scale of the left image is adjusted so that green is about 0.2, and red is any value of 0.4
or greater. The color scale of the right image is again adjusted so as to make the large
|z| zeros more clearly visible. In this case, values greater than 0.031 are red.

The above conjecture can be explored by taking slices along rays, shown in the fig-
ure 5. It shows six slices, taken along the direction z= eiθ for θ = 0,π,2π/3,2π/4,2π/5,2π/6.The
leading divergence of e|z| has been removed, leaving a divergence that seems to be about
of order |z|/ log |z|. Notable in this graph is that no zeros are visible along the rays for
θ = 2π/4 and θ = 2π/6. This suggests the the above conjecture about rays at primes
vs. composites was incorrect.

Most notable about this picture is the pronounced smooth oscillations along each
ray. It’s visually clear that the wavelengths get longer as |z| gets larger. Closer exami-
nation shows that the wavelength goes as the square-root of |z|.

A similar exploration of rays directed along quadratic irrationals suggests that such
rays pass very close to zeros on a number of occasions, but none actually pass through
a zero. Figure 6 shows a phase plot of one such ray, graphing the real vs. the imaginary
part of E (z) for z running from 0 to 1000. The close passes are visible: keep in mind
that since the leading exponential scaling is removed, the close passes visualized here
are indeed very close. At any rate, the phase along a slice is not simple or regular; the
figure is a mess.

So where are the zeros located? Hard to say. The exploration of other angles,
including simple fractions (without any factors of π) suggests that these, too, manage
to not hit any zeros, at least, not for |z|< 1000, although the ray for θ = 1/3 really sure
does come very, very close.

Below is a table of the 11 zeros nearest the origin. The coding is such that z =
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Figure 5: Slices along Rays
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Figure 6: Slice along a quadratic irrational
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reiπϕ = x+ iy. Accuracy is good to about the last digit. Plouffe’s inverter[6] doesn’t
seem to know any of these numbers. They’re presumably all some unknown transcen-
dentals.

r ϕ x y
1.5307945356883 0.78184092190433 -1.1851209706937 0.9689273426400
4.0367224459103 0.39186518257935 1.3451122542394 3.8060216931609
4.5623453697754 0.60435053770449 -1.4690131787199 4.3193744401079
8.3702116601813 0.22324068364269 6.3947066808728 5.4007564008976
8.4224011490127 0.80891465405978 -6.9498220138446 4.7578162102767
11.344004468582 0.44048322811112 2.1087356654558 11.146285088604
13.460094569784 0.81744853194064 -11.306557973367 7.3031426538461
15.804853981417 0.18788938300147 13.130504695764 8.7967753073744
16.909948423814 0.53886030109517 -2.0592969204905 16.784089248133
19.238778607721 0.26037809273961 13.153182482454 14.040099461904
20.867068162569 0.76767832172763 -15.551551998824 13.913438256922

Below is another table of zeros, this one for EG(ngpf;z), where ngpf(n) = n ·
gpf(n) and

EG( f ;z) =
∞

∑
n=0

f (n)
zn

n!

That is, this is the same gpf exponential series, except that it’s been shifted over by one.
That is,

EG(ngpf;z) = z
d
dz

E (z) =
∞

∑
n=1

gpf(n)
zn

(n−1)!

Note that these are in the same general location as the above, except that they have
moved inwards a bit.

r ϕ x y
0.8802234956260 0.83295289206477 -0.7617693460645 0.4410225228358
3.2375048946125 0.42458721923649 0.7598622312185 3.1470696420968
3.7441361185659 0.59817818048564 -1.136602428757 3.5674486952574
7.4736771339129 0.23110162504623 5.5889493606786 4.9618035980621
7.5113122974420 0.80582634942347 -6.1565697810839 4.3030757558226
10.41426766772 0.44047959714246 1.9360237252942 10.232730974183

12.602613307375 0.81645934805374 -10.564968103744 6.8707576832617
14.800600506967 0.19203401986558 12.187879585189 8.397223742630
15.997814072863 0.53774902696863 -1.8927698515501 15.885448605531
18.340908478517 0.25911033247266 12.592535370681 13.334803213977
19.957065054996 0.7682384241160 -14.896747647415 13.280487759815
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Figure 7: Uniform Random Sequence

The exponential generating function EG(rs;z) for a random, uniformly distributed se-
quence 2 ≤ rs(n) ≤ n. Note the absence of rays, except for one along the positive
x-axis. This can be accounted for by the fact that none of the rs(n) are zero (or nega-
tive), and thus cannot factor in such a way that there would be a zero on the positive
x-axis. This is an expression of Descartes’s rule of signs, expanded from polynomials
to series.

The image runs out to a radius of 2160; to get the color map correct, the leading
exponential divergence is removed, as is also a factor of log2 (r)/r. In other words,
rs(n) does have a different asymptotic behavior than gpf(n).

Random Sequences
Before one gets too excited, its worth asking: how much of the general shape of this
function is due to the fact that the greatest-prime-factor sequence is being used, and
how much is "generic", shared by any similar series? To answer this question, one can
generate random series rs(n) that roughly resemble gpf(n). Consider, first, the series
having the property that 2≤ rs(n)≤ n, but otherwise having a uniform distribution in
this range. In such a case, one finds that EG(rs;z) does have zeros scattered all over
the complex plane, in a roughly similar distribution; however, the rays are completely
absent, as can be seen in figure 7.

Perhaps the rays are due to the primes? One can consider a random distribution
rps(n) having the property that 2≤ rps(n)≤ n and also that rps(n) is prime. Figure 8
shows EG(rps;z) for two such random uniformly distributed sequences. No rays, but
hints of rings! Curious! And also, an odd left-right symmetry! Clearly, more work can
be done in this general area.
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Figure 8: Random Prime Sequences

The exponential generating function EG(rps;z) for a random, uniformly distributed
sequence of primes, with 2 ≤ rps(n) ≤ n. Such images all show suggestions of zero-
free rings!

Zero-free Lanes
The singular ray visible in figure 7 provides a key for how one might want to hypoth-
esize and talk about the zero-free lanes. When a sequence f (n) has the property that
0 < f (n) for all n, then the exponential generating function EG( f ;z) cannot have any
zeros along the positive real axis. That is, it is impossible to find a factor (z−b) for
real, positive b. Without a negative f (n), there is nothing to introduce the needed
minus sign. With this in mind, the rotated function

Ep/q (z) =
∞

∑
n=1

gpf(n)e−2πipn/q zn

n!

which apparently has no roots on the real axis, whenever p/q is a rational.
Continued zooms are striking. Figure 9 shows a further outward zoom. This time,

a ray at Z4 is incontrovertibly is visible. The width of the rays, relative to their angular
distribution, does not follow any obvious pattern explainable by hand-waving. The
blueness in the center, vs. the redness towards the edges, is annoying. This suggests
that the asymptotic behavior has been misjudged. This is handled next.

What are the angular locations of the zero-free lanes? These are shown in figure
10, and are labeled with Farey fractions, to show their positions, and with a bunch
of Ley lines, to demonstrate their heights. The graph was obtained by computing the
absolute value |EG(gpf;z)| along radial slices. Plotting just one radial slice is noisy
and indistinct, contradicting what is visually obvious. Thus, some noise cancellation is
in order. This can be done by averaging together multiple radial slices; the figure below
shows an average of 500 of them, taken near the radius r = |z| of about 16000. The
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Figure 9: Hints of Projective Geometry

The left image shows E (z) for −20000 ≤ x,y ≤ +20000. The right image is from a
photo of trees, posted by Mian Faisal on Google+. The visual resemblance suggests
that there must be some way of understanding E (z) in terms of projective geome-
try, possibly starting from ascending vertical pegs planted on a square grid (e.g. and
then deriving properties from the symmetries of a square grid: viz. the modular group
SL(2,Z) which already has rampant connections to analytic number theory.) A more
precise hypothesis is elusive.

zero-free lanes are the spikes. The tallest spike, at the angle of zero, was normalized to
unit height; it sets the overall scale.

The spikes clearly correspond to the Farey fractions. A few seem to be missing:
for example, 2/9 and 1/8 seem to be missing. Before jumping to conclusions, though,
it might be the case that these are drowned in the noise. The heights of the spikes are
very clearly predicted by straight lines with rational slopes, and are in Farey-order. The
tallest spike is at 0/1, and by symmetry, also at 1/1. The first Farey fraction between
these two is (0+1)/(1+1)=1/2, which is the second-tallest spike. Between these two
is the next Farey fraction; it lies between 0/1 and 1/2 and so is (0+1)/(1+2) = 1/3 –
which is the location of the next tallest spike. After that, there are two Farey fractions:
(0+1)/(1+3)=1/4 and (1+1)/(2+3)= 2/5. Argh! The pattern breaks down! Although the
spike at 2/5 is indeed the next tallest, the spike at 1/4 is unexpectedly short. How is that
even possible? Oh well.

Anyway, the two spikes at 1/5 and 2/5 seem to be of exactly the same height. The
next row of the Farey triangle is 1/5, 2/7, 3/8 and 3/7. Clearly, there’s a tall spike at
3/7, same height as 2/7 but taller than 2/8 and shorter than 1/5. So something throws
off the regular patterning, even though the Ley lines clearly indicate that there is an
exceptional amount of regularity.

Note that the heights are absolute heights, and not the heights relative to the noise
floor. Presumably, working at more distant radii, and taking more averages would drop
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Figure 10: Locations of Zero-free Lanes
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the noise floor; in the limit going to zero, I suppose.

Asymptotic behavior
Figure 11 shows E (z) over a wider domain still. It uses a different normalization
than the earlier pictures: it multiplies E (z) by a term 4r−1 log(r)exp(−r) where r =
|z|. That is, the leading exponential divergence is easily brought under control by the
exponential term, leaving a much weaker divergence. Dividing by r seems to over-
compensate; multiplying by the log term seems to be just about right. The factor of 4
is just what is needed to get a pleasing color balance in this picture: again red areas
represent values greater than 1, green are the values near 0.5, and blue-black are areas
of about 0.2 or less. (No other processing is applied to this image, nor to any other
image in this text – the data is always presented in its "raw" form; the colors accurately
represent the actual magnitude of the function, as presented).

The most notable aspect of this image, as compared to the earlier ones, is the nar-
rowing of the rays. If one asked for the number of zeros in a pie-sliced wedge, and
graphed that as a function of the angle, one would see a devil’s-staircase type function.
But, as this image shows, the treads on those stairs decrease in size as the radius of the
circle increases. The rate is unclear; perhaps it goes as the square-root of the radius?
That is, there are lanes that are completely free of zeros; these lanes get wider for larger
radius, but at a sub-linear rate. They would have to, to make room for finite-width lanes

11



Figure 11: Asymptotic Rays

The function 4E (z)e−|z| log |z|/ |z| for −1.25× 105 ≤ x,y ≤ +1.25× 105. The color
coding is the same as in all other figures.
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Figure 12: Ray Close-up

How real or illusory is the Moiré patterning? Below shows a close-up, running along
the domain 24000 < x < 48000 and −12000 < y < 12000. There is a hint of yet more
structure – there seem to be diagonal arrowhead/feather lines. Individual zeros are
clearly distinguishable, and it is interesting how they line up so regularly, maintaining
a uniform lane.

for every rational! A formula for the lane-width is discovered in a later section, below.
The widening of these zero-free lanes is one of the more interesting aspects of this

image. Clearly, this image, more strongly than any other, suggests of a ray for every
rational. The simplest rationals have the widest lanes; but what, exactly, constitutes
"simplest", here? If the rays are arranged according to widths, do they come in Farey-
fraction order?

Also notable is a vague hint or suggestion of Moiré patterning along the x-axis. Re-
call that Moiré patterns occur when one regular (cyclic) grid pattern is superimposed
on another, but shifted over. In this case, one regular pattern are the square pixels of
the image; the other is the location of the zeros. The appearance of a Moiré pattern is
then strong evidence that the location of the zeros are not "random", but are correlated
in some regular, cyclic way (as one moves from ray to ray). But of course it is: figure 5
shows six slices taken along a constant angle (six rays). These each show a characteris-
tic oscillation with some very strong Fourier components. The Moiré patterns are these
same Fourier components, interfering with the characteristic pixel size. A closeup of a
ray can be seen in figure 12.

The asymptotic behavior of the generating function can be guessed at by numerical
means. Figure 13 show the re-scaled quantity −7/4+E (r)r−1e−r log(r) as a function
of
√

r. Strong periodic oscillations are clearly visible. The rescaling hides just how
small these oscillations are: So, for

√
r=60, one has r = 3600 and rer/ logr≈ 101566– a

truly large number, and so the amplitude of the oscillations is 1566 orders of magnitude
smaller than the function itself! Yes, the exponential divergence is obvious. What is
have left is then r/ logr≈ 440 so the rescaling pulls out two orders of magnitude. That
this does indeed seem to be the correct asymptotic scaling is reinforced by the graph
that shows the same oscillations out to

√
r = 600. This corresponds to r = 3.6× 105
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Figure 13: Asymptotic Behavior
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Oscillatory component remaining, after removal of a large asymptotic factor. Both
figures show −7/4+E (r)r−1e−r log(r) along the real axis. Note the vertical scale of
these graphs: one concludes that E (r) is exceedingly smooth, given how small these
residual variations are. This is not numerical error; the data is obtained using arbitrary
precision codes with sufficient cross-checking to assure that these graphs are accurate,
as shown. In particular, the right-hand graph requires well in excess of 1600 decimal
places of accuracy to obtain correctly.

and r/ logr ≈ 2.8×104, which is still quite large, as compared to the magnitude of the
oscillations! That the oscillations are happening around 7/4 = 1.75 is just a suggestion
from the graph: closer numerical work suggests that the centerline is perhaps at 1.744.

The Fourier Spectrum
The periodic behavior in figure 13 suggests a question: What’s the Fourier spectrum?
Low-frequency noise, it seems. Figure 14 shows the amplitude of the Fourier compo-
nents, as a function of frequency. Specifically, this shows the amplitude

√
a2 (ω)+b2 (ω)

where the Fourier components are

a(ω) =
∫

f
(
t2)cos(2πωt)dt

b(ω) =
∫

f
(
t2)sin(2πωt)dt

and where f (r) is the asymptotically rescaled generating function:

f (r) =−7/4+E (r)r−1e−r log(r)

The integration is taken over the range 10 < t < 610. This corresponds to the right
graph of figure 13. Again, its hard to overemphasize how small these oscillations are:
the integral is performed over a region where the generating function blows up by 161
thousand orders of magnitude! Take some caution, however, in interpreting the graph
scale: the amplitude at any given frequency is probably either zero or infinite; this
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Figure 14: Fourier Spectrum
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graph is just an approximation to the true Fourier spectrum, which (I presume) consists
of Dirac delta functions of various weights at various irrationals. That is, it seems
reasonable to hypothesize that the support for the Fourier spectrum is a Cantor space;
a comb that is zero at the rationals, but having integrable support on what remains.

Perhaps the most notable feature of this graph is that, indeed, it looks very noisy:
there is no obvious self-similar structure in it. Its hard to make out what the fall-
off in frequency is: its perhaps cubic. In case you are wondering: no, this is NOT
numeric noise; this can be most easily seen in the left graph of figure 13, where the
oscillations are small and smooth; it is the Fourier components of this smooth graph
that are not smooth. The calculations are performed with the Algorithmic ’n Analytic
Number Theory[7] multi-precision library (based on gnuMP); the results are verified
by repeating the calculations at various different precisions.

Counting the Zeros
The zeros seem to be scattered very uniformly around the complex plane. How many
are there? They are easy to count, using Cauchy’s argument principle: one performs an
integral of the phase around a circle of radius r; this counts the number of zeros inside
the circle. This counting is easy to perform numerically. The result is that there are
almost exactly N zeros within radius N of the origin, the count being off by no more
O (log(r)). The surplus or deficit of zeros, as a function of the enclosing radius, is
shown in figure 15.

This figure suggests that the strict bound is 1± [log(r+1)+M log(log(r+1)+1)]
with equality holding at r = 1 (there is one zero inside of r = 1). What’s M? Good
question. If you only graphed out to r = 120, you might think that M = 1 is a tight, but
good bound. Not so, as it fails near r = 123. So maybe M = 2? Sure, that works out to
about r = 844, where it fails. So maybe M = 3? Sure, that works out to about r = 1832,
where it fails. So maybe M = 4? Sure, why not, the figure supports that hypothesis.

Note that this linear dependence on the radius means that the density of zeros is
decreasing as the square root — the area of a circle goes as r2.

Proving this bound may be hard; similar bounds are known to be equivalent to the
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Figure 15: Excess and Deficit of Zeros
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The excess or deficit of zeros within a circle of a given radius. That is, the number
of zeros within a circle of radius r is r plus the remainder shown above. The figure
on the right is a close-up of what happens at r = 1832, where the count surpasses one
of the hypothesized logarithmic bounds. Note that the data for these graphs was very
compute-intensive to create: it represents several CPU-months of calculations.

Riemann hypothesis (examples include the bounds on Merten’s conjecture (sums of the
Mobius µ) and of Newton series expansions of the Riemann zeta (Flajolet’s paper with
me)[8], both of which have this characteristic square-root form). Of course, I have no
clue if the zero-counting formula is equivalent to the Riemann hypothesis, but I would
not be surprised.

The Reciprocal
One may continue in this vein. Figure 16 shows the generating function for the recip-
rocal of the GPF function. To be precise, the figure shows the rescaled absolute value
of

EG
(

1
gpf

;z
)
=

∞

∑
n=1

1
gpf(n)

zn

n!

Clearly, there’s a new feature visible here: rings! Concentric rings! Hard to tell, but,
pulling out a ruler and eyeballing them, they seem to be located at powers of two: for
the left image, the outermost ring is at a radius of 2048, then three more clearly visible
ones are at 1024, 512 and 256. Hard to tell, but there is a vague hint of another ring at
1536=3*512. And maybe yet many more rings! Wow! Who knew?

The right image in figure 16 shows something else now: visible lines paralleling
the positive x-axis, seeming maybe to curl around the origin in some vaguely parabolic
way. There’s a particularly large pseudo-parabolic orbit visible, coming in from the
right, about 3/4th’s of the way up, turning around the origin, and exiting abut 3/4th’s of
the way down (on the right, of course – its easy to see, once you see it.)

As before, there are hints of Moiré patterning along the x-axis, although this time,
the scale of the picture is such that the individual zeros can still be distinctly made out.

16



Figure 16: The Reciprocal GPF

Both images show the exponential generating function for the reciprocal gpf, scaled to
remove leading divergences. The left image shows the absolute value of

1
3

e−|z| log3 |z|EG
(

1
gpf

;z
)

on the domain −2160 ≤ x,y ≤ +2160. The color scale is as always: red corresponds
to values of 1.0 or greater, while green is 0.5 and blue/black is 0.25 or less. The right
image shows

0.005e−|z| log5 |z|EG
(

1
gpf

;z
)

on the domain −2× 104 ≤ x,y ≤ +2× 104, with the same color scale. Clearly, the
numerical estimation of the logarithmic terms in the asymptotic behavior is a bit am-
biguous. In both cases, the asymptotic term was picked to give the appearance of a
uniform color balance.
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Therefore, the Moiré patterns cannot be optical pixel-scale effects – that is, its not an
effect due to the finite size of the pixels – it does not meet the criteria for the classical,
canonical definition of the Moiré effect in a computer graphics image. Instead, the
Moiré patterning seems to actually exist within the function itself! This suggests that
perhaps the function itself can be decomposed as a sum of "layers", each layer consist-
ing of a very regular oscillatory pattern, with only the sum of the patterns resulting in
the apparent chaos of the image.

What are all these features? How are they to be described? What do they corre-
spond to? One can’t help but get the sense that this is the projection of some structure
on some bundle, some structure built of sheafs and germs, but quite how to get that is
unclear.

What are these parabolic-like orbits? Well, there’s an alternate plot that makes
curve-fitting easier. The left image in figure 18unwinds the the graph from around the
origin, showing, much like the previous

1.6e−|z| log |z| log4 [log(|z|+1)+1]EG
(

1
gpf

;z
)

except that here, z = reiθ with θ running along the vertical axis, from 0 to π . Along
the horizontal axis, r is plotted on a logarithmic scale, so that r runs from 1 on the
left to 65536 on the right. Superimposed on this figure are five hand-fitted dashed
white lines. One tries to capture the edge of the root-free zone. This line is given by
sinθ/2 = 1/

√
r. Note the radical. Careful examination shows that at least a few zeros

appear on the wrong side of this line – the shape seems to be only approximate. Four
more curves try to fit the pseudo-parabolas. The fits are OK on the large-r asymptotic
region, but poor in the small-r region. The four that are drawn are given by

768
r

,
1200

r
,

1500
r

,
1948

r
= sin

θ

2

The integers in the above are approximate ... they are obtained by eyeballing. I tried
to pick integers with a small number of prime factors, and these seem pretty close,
but there is no obvious pattern that is emerging. It is worth spending a few minutes,
looking at this under magnification.

What happened to the circles? This is a conformal map; they should be vertical
lines! Well, they are still there, just too narrow to be visible in the left-most image.
They do become visible, in the middle image: five evenly spaced vertical lines. The
five vertical lines correspond to r = 2048,4096,8192,16384, and 32768, respectively.
Otherwise, there is nothing particularly new in this image; everything visible here is
visible in earlier images.

Just how thin are these vertical lines? The rightmost image is a closeup of the
middle image in this case, r runs from (32768-650) to (32768+650). Eye-balling the
red strip, it seems maybe 350 units wide – so maybe a width of

√
32768 = 362 is

a decent wild guess. Is this vertical stripe really zero-free? Hard to tell from this
picture. There are lots of blue smears – there are about 650 zeros in this image (as
demonstrated earlier, there are about r zeros inside a circle of radius r; the width of this
image is 650+650 but the height is only π and not 2π .) Fiddling with the color-map
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Figure 17: Zoomed Reciprocal GPF

Just as the previous figure, this shows the exponential generating function for the re-
ciprocal gpf, but for a wider domain −1.2× 105 ≤ x,y ≤ +1.2× 105. Note that there
are parabola-like orbits facing to the left and to the right. Those aimed to the right are
obviously visible; those to the left are extremely faint. There are also hints of other
traceries, but its hard to say if these are merely optical, visual field effects or if they
have some basis in mathematical reality. The prominent parabola-like orbits appear to
be described by the curve C = r sinθ/2 for constants C.
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Figure 18: Unwound Reciprocal GPF

All images use a mapping z = reiθ with r running along the horizontal axis, left to
right, and θ along the vertical axis, from θ = 0 at the bottom, and θ = π at the top.
The horizontal scale is logarithmic. The left image shows 1≤ r ≤ 65536, the middle
image has 1024≤ r ≤ 65536, and the right image shows the much tighter range
32768−650≤ r ≤ 32768+650. The dashed white lines in the left figure are attempts
to guess at locations of curves; they are as explained in the text.

helps isolate some of these a bit more clearly, and it seems like there might be dozen or
two zeros actually within the red stripe, rather than all the blue being just a smear from
outside the stripe.

Why are there parabolas? Because, one might say, we are plotting the function
wrong. The parabola-like curves are given by C = r sinθ/2 for constants C. But this
curve is just what the straight line C = r sinθ would look like under a conformal map
z→ z2. This suggests that perhaps a more natural setting is the Poincaré upper-half-
plane; that is, the complex upper-half-plane endowed with the Poincaré metric. With
this setting, the radial lines become vertical lines; the circles become horizontal lines,
and the pseudo-parabolas become half-circles, terminating on the y = 0 horizon. Pre-
sumably, this can make a modular symmetry apparent.

The Reciprocal Squared
The figure 19 shows

EG
(

1
gpf2 ;z

)
=

∞

∑
n=1

1
gpf2 (n)

zn

n!

with the domain −2160 ≤ x,y ≤ 2160. As usual, the leading order of exp |z| has been
removed. The circular rings are far more prominent, now. The primary sequence seems
to be located at powers of 2; so that, here, the outermost ring appears to be of radius
2048; the middle one presumably with a radius of 1024, etc. The other rings are pre-
sumably at other powers of various different primes.
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Figure 19: Reciprocal Squared

Figure 20: Moiré Patterns

Moiré Patterns
Figure 20 show actual Moiré patterns! All three images show the real part of EG(gpf;z)e−|z|.
As noted at the very beginning, the phase portrait in figure 2, the phase forms radially
oriented fingers. Likewise, the real part of the function consists of radially oriented,
roughly sinusoidal ridges and valleys. At the scale of this image, the distance between
peak and trough is less than one pixel, and so by using a sharp sampling, one necessar-
ily gets a sampling aliasing effect (spatial Nyquist aliasing). The left image is 400x400
pixels in size, and it shows a region 0 ≤ x,y ≤ 2000 (the upper-right quadrant). The
Moiré patterning gives a hint about how the radial fingers differ from being perfectly
radial.

The middle image shows the region 0≤ x,y≤ 4000. Of course, Moiré patterning is
very sensitive to the sampling frequency. The rightmost image shows 0≤ x,y≤ 8000.
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Figure 21: Pochhammer Generating Functions

The Pochhammer Symbol
One last diversion. The left image of figure 21 shows the greatest prime factor, using
the rising Pochhammer symbol in the generating function. Its normalized by a facto-
rial, for convergence, so it perhaps should be called a binomial coefficient generating
function. Specifically, define

RPG( f ;z) =
∞

∑
n=1

f (n)
(z)n

(n!)2

where (z)n = z(z+1)(z+2) · · ·(z+n−1) is the rising Pochhammer symbol. The two
factorials in the denominator guarantee convergence, as otherwise the sum is badly be-
haved. The leading divergence is removed; the graph shows RPG(gpf;z)exp

(
−2
√
|z|
)
/ |z|.

Notice the
√
|z| in the normalization: such binomial-coefficient sums (Newton series,

if given their proper name) are "well-known" to diverge in this kind of square-root
fashion.[8] As before, there seem to be zero-free rays at angles θ = 0 and π; of course,
and at 2π/3 and, harder to discern, at 2π/5. Presumably all the other rationals are
there too; they are not very clear in this picture. The domain in this picture is just huge:
−106 ≤ x,y≤ 106 – this is far far wider than any of the previous images: the zeros are
much, much farther apart.

One may also consider a very similar sum, using the falling Pochhammer symbol,
instead of the rising one. This symbol is given by z(n) = z(z−1)(z−2) · · ·(z−n+1).
The resulting image appears below, it is of FPG(gpf;z)exp

(
−2
√
|z|
)
/ |z|. The scale

is again −106 ≤ x,y≤ 106.
Some of the first few zeros for the rising Pochhammer generating function are

shown below. Note that the first two lie precisely on the real axis. The others do
not seem to occur at any low rational angle (the column ϕ shows the angle in units of
π , thus a value of ϕ of one indicates the negative x-axis), although the next few seem
to try to get close to the 3rd roots of unity, and the one after that the 6th root of unity.
After that, there is no clear progression. As before, they are presumably transcendental,
rather than, for example, quadratic irrationals, or some such.
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r ϕ x y
1.3949092398684 1 -1.3949092398684 0
4.5626759564288 1 -4.5626759564288 0
10.245898379007 0.64420879547681 -4.4846874842696 9.2122750589292
24.83352515618 0.63379620727208 -10.133683877231 22.671842068058

55.576607747775 0.3205855915997 29.693058011758 46.979587425396
72.25879634152 0.8121672651601 -60.038996469216 40.207618080342

117.75420722502 0.46759200907347 11.968172804434 117.1444243612
192.15199916793 0.81693429156798 -161.24015864602 104.51795072638
201.03591391007 0.25107689390384 141.67211584758 142.63397306717
285.6352301736 0.54737231184267 -42.35277394865 282.47783498034

364.85530526812 0.27307016022456 238.63224457153 275.99645945745
442.19734166307 0.78730029361836 -347.09323384104 273.97951747467

The table below shows the first few zeros for the falling Pochhammer generating
function. Note that the zeros differ from those above. Note that they all seem to be
close to, but not quite on, 4th and 8th and 16th roots of unity.

r ϕ x y
0.72183600549901 0.49137876622082 0.019548108331473 0.72157126487647
10.360150450484 0.45106261529342 1.5865160932827 10.237953117808
23.302941560009 0.47588077521583 1.7640394756877 23.236076477697
57.987569085342 0.7605584350114 -42.340693875438 39.621002139948
67.48077369795 0.26157732931857 45.949442919987 49.419667281528
122.32995335662 0.40689342952179 35.273809336995 117.13400814063
168.26853286447 0.78918215559082 -132.69280305254 103.4742439954
224.60980862841 0.22477866727782 170.89602763141 145.75360672003
281.86194385292 0.50767619198356 -6.7965739748906 281.77998859881
393.67913951173 0.2492135681373 279.06010117129 277.68457793146
410.84081343407 0.76652914265676 -305.19542443344 275.03804625552

The right-most image is for the rising Pochhammer generating function, but show-
ing the domain −1.6×108 ≤ x,y≤ 1.6×108 – again, this is several orders of magni-
tude wider than any earlier graphics.

Although superficially similar to the other graphs shown previously, this is differ-
ent. Note that the zeros far from the origin are clearly distinguishable visually, unlike
those near the origin: this indicates that the density of zeros is falling like the square
of the radius, that is, as the area of the graphic. This is already suggested by the diver-
gence of the function going as exp of the square-root of the radius – as if the density of
zeros is tied to the rate of divergence of the function along some radial ray.

How many zeros are there? As before, we have the curious similarity: the bound on
the rate of divergence of the function gives the count of the zeros. Thus, asymptotically
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Figure 22: Excess/Deficit of zeros of RPG(gpf;z)
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1 ± [1 + log(r+1)/2 + log(1+log(r+1))]

RPG(gpf;z) seems to go roughly as O
(
|z|e2
√
|z|
)

. The number of zeros inside a circle

of radius |z| appears to be given by 1+
√
|z| and the error of this approximation is

bounded by

±
[

1+
1
2

log(1+ |z|)+ log(1+ log(1+ |z|))
]

as shown in figure 22. This bound appears to be tight; nothing tighter seems to work.
Note that this bound extends all the way to |z|= 0 – that is, it is not violated at small|z|.

Conclusion
The use of exponential generating functions with almost any classical arithmetic func-
tion arising in number theory (such as the divisor function, the Euler totient, the prime
counting function, etc.) is very nearly unheard of, and tackling the greatest prime fac-
tor in this way is unique. Why would that be so? Because there are no known results
for the exponential generating function in this setting. This is in sharp contrast to the
Dirichlet generating function (i.e. the Dirichlet series) or the Lambert generating func-
tion (Lambert series) which have a vast number of identities commonly presented in
undergraduate number theory courses.[9]

The visually apparent symmetries in the images here makes it quite clear that there
is some sort of distorted modular symmetry at work, apparent just out of easy reach.
The figures here whet the appetite. Perhaps a proper theory of these figures would start
with something simpler than the greatest prime factor function: certainly the divisor
function and the Euler totient function appear to be far more regularly patterned, when
passed through the exponential generating function. But even then, although there is a
tremendous visual regularity to those figures, it still seems impossible to obtain closed
form solutions. So the best one can do for now is to stare in wonder.
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