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This report presents measurements of the quality of various different dictionaries learned from
two different language-learning pipelines; one is the ULL/Kolonin variant, the other is the Linas
variant. The ULL/Kolonin dictionaries suggest two major breakthroughs: they suggest how the
learning pipeline should be tuned, and they indicate how the pipeline is relatively insensitive to
early stages of processing. The Linas variant results indicate that the sheer quantity of training
data has a strong impact on the quality of the learned grammars.

This report briefly reviews the dictionaries, the algorithms used to obtain them, and measure-
ment results. It is assumed that the reader has a general familiarity with the project.



1 Baseline Measurements

This provides the introduction and the baseline to the algorithm, the measurements, and the
results.

1.1 Introduction

The language learning project attempts to extract symbolic grammars from a sampling of raw
text. The general process is conceptually straight-forward:

1. Obtain provisional parses for a (very) large quantity of text.

2. Chop up up the resulting parses into individual words, with co-occurring connectors. That
is, each word-instance in the text is associated with a set of connectors pointing at the
other words it connected to in that particular parse. Thus, one has a word-instance, and a
connector-set extracted from the parse in the first step. These connector-sets are variously
referred to as “disjuncts” or “germs” in related texts.

3. Treat connector-sets as the basis vectors in a vector space. Thus, a word is actually a
collection of (word, connector-set) pairs, with an associated count of the number of times
that particular (word, connector-set) was seen during parsing.

4. The vector representation allows different kinds of word-similarity judgments to be used,
and thus allows words to be clustered into classes. These classes should be called “gram-
matical classes”, as all of the members of that class behave in a grammatically-similar
fashion.

5. The grand-total collection of grammatical classes forms a dictionary or a lexis or a “gram-
mar”; this dictionary is now a valid symbolic description of grammar, in that it can be use
to parse new, previously-unseen sentences, and extract their syntactic structure, as well as
some fair amount of semantic content.

The language-learning project contains two distinct implementations of the above pipeline. The
first implementation, tightly coupled to the OpenCog AtomSpace, was created by Linas (the
author), but put on hold as various other intervening priorities interceded. Development of
that pipeline has recently resumed. A second implementation, termed “the ULL Project” was
subsequently developed by a team lead by Anton Kolonin, including Andres Suarez Madrigal
and Alexei Glushchenko. It is partly derived from the first implementation, but diverges in many
important ways. In particular, it eschews the use of the AtomSpace, replacing it by a collection
of ad-hoc text-file data formats and Python tools.
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This paper reports on early results from these two different systems. It is structured as fol-
lows. The first several sections review the status and datasets used by the author, in his own
pipeline. As such, this becomes a bit like a laboratory notebook diary, making notes of datasets
in possession of the author, their names, their status, their general characteristics. The next sec-
tion reviews some very early dictionaries that were produced by the author. They are highly
preliminary: many important processing stages have not been implemented, various shortcuts
and hacks were applied to the stages that do exist, and the evaluated dictionaries are just tiny.

The last section reviews the ULL datasets. These suggest not one, but two extremely important
breakthroughs for the project. The first is that it seems like a method for tuning the learning
pipeline has been discovered, as well as an objective measure for the fidelity of the pipeline. In
short, it seems that there is a way of validating that, when given a fixed grammar, the pipeline
preserves the structure of that grammar, despite the steps 2-through-5 above. That is, it seems
that steps 2 through 5, when performed with some care and diligence, preserve the structure of a
grammar, and do not wreck it, nor do they alter it into something else. This is still a preliminary
result, and needs additional validation. But if it holds true, it is extremely important, as it allows
the quality of the 2-through-5 pipeline to be measured and tuned. Once tuned, the pipeline can be
trusted: whatever grammar goes in, that is the grammar that comes out. Thus, when an unknown
grammar is put in, then whatever comes out must be correct.

A second breakthrough from the ULL datasets is that the resulting grammar is relatively
insensitive to step 1. As long as the provisional parses have some accuracy above random chance,
then, by accumulating enough samples, the errors in the provisional parses will cancel out. This
is as it should be in radio receivers, or any kind of statistical sampling: The bigger the sample,
the better the signal-to-noise ratio. Although the provisional parses of step 1 are noisy and often
incorrect, they are good enough, when enough samples are collected.

There are several minor results worth mentioning. From the ULL datasets, it is clear that
the Project Gutenberg tests provide an inadequate sample of modern English. From the Linas
dictionaries, its clear that large sample size really makes a difference; the Linas dictionaries,
although tiny, inadequate and hacked, trounce the ULL datasets when measured out-of-training-
set.

One last result is worth mentioning: an “unknown word” system, described below, appears
to be quite effective in offering broad coverage when new, unknown words are encountered in
the test texts. Due to Zipfian distributions and long tails, the overlap of the test-vocabulary with
the dictionary vocabulary is shockingly tiny. Thus, an unknown-word mechanism is critical for
providing reasonable coverage.

1.2 June 2019 Restart

Work by the author was suspended in the Fall of 2018, and was restarted in June 2019. This is
an attempt to pick up where things got left off. It summarizes the grammar learning dataset, the
algorithms and some preliminary results, as it stands at the moment.

• The primary dataset, en_dj_cfive, appears to be in good condition and should be
usable for a good long while, before updates are needed.
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• The algorithms are incomplete; much work remains to be done. Work on the core ideas,
such as the “sheaf” idea, has not yet started in earnest, although some scaffolding has been
laid.

• Existing code is sufficient to generate word-classes, word-sense disambiguation and gram-
mars.

An eyeball inspection of the word-classes suggests that they are quite healthy, but there are no
automated tools to verify their quality. The clustering seems to be able to split words into word-
senses, placing them into correct clusters. The assignments look reasonable, when judged by
eye, but there are no automated measurements. These last two results were previously reported
in detail in the Winter of 2017 and Spring of 2018. This report focuses on the resulting grammars
that can currently be generated, and an automated process to measure their quality.

To repeat: these are highly preliminary, as most of the important parts of the grammar gener-
ation mechanism have not yet been implemented. The results here are a sniff-test or proof-of-
concept, to show that the idea works at some minimal level.

1.3 Baseline Dataset

The baseline is the en_dj_cfive dataset. Let’s recall how this dataset was obtained:

1. All five “tranches” of the training corpora were used to obtain word-pair MI scores. Unlike
the earlier en_rfive datasets, this uses a bug-fixed tokenizer.

2. All five (the same five) tranches were run through the strict-MST parser, to obtain word-
disjunct pairs. The disjunct connectors are all single-word connectors. The MST parser
was “strict”, in that it always created a tree (no loops) that always connected every word
in a sentence. Each word-disjunct pair has an associated count, which is the number of
times it was seen during MST parsing.

That’s it. Starting with this dataset, various subsets were created:

• en_micro_marg – Keep only words with observation count>500, sections with count>10;
discard all sections that contain connectors that cannot link to anything.

• en_mini_marg – Keep only words with observation count>40, sections with count>5;
discard all sections that contain connectors that cannot link to anything.

• en_large_marg – Keep only words with observation count>8, sections with count>3;
discard all sections that contain connectors that cannot link to anything.

• en_huge_marg – Keep only words with observation count>3, sections with count>1; dis-
card all sections that contain connectors that cannot link to anything.

• en_full_marg – Discard all sections that contain connectors that cannot link to anything.
(todo: rename to full-marg)
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Recall that each dataset can be thought of as a (very) sparse matrix. Rows of the matrix
are words; columns of the matrix are disjuncts. Each entry in the matrix is a word-disjunct
pair; it is called a “Section” (a SectionLink in the AtomSpace). Below are the stats from the
(print-matrix-summary-report) function.

Size Secs Obs’ns Obs/sec Sparsity Entropy MI Dataset
1610 x 67K 184K 14.7M 80.3 9.20 15.17 4.60 en_micro_marg
7385 x 270K 608K 20.8M 34.2 11.67 16.79 4.96 en_mini_marg
17K x 947K 1.56M 26.2M 16.7 13.34 18.08 5.16 en_large_marg
55K x 6.03M 7.91M 42.3M 5.35 15.35 20.69 5.89 en_huge_marg
438K x 23.3M 31.7M 69.2M 2.18 18.30 23.08 8.15 en_full_marg
445K x 23.4M 31.9M 69.4M 2.18 18.32 23.09 8.16 en_dj_cfive

The columns are:

• Size – Dimensions of the matrix. Number of words x Number of disjuncts. Notation:
|w|× |d|.

• Secs – Total number of Sections. That is, total number of word-disjunct pairs in the matrix.
Notation: |(w,d)| (sometimes written as |(∗,∗)|).

• Obs’ns – Total number of observations of Sections. Sum total of how many times the
sections were observed. Notation: N (∗,∗).

• Obs/sec – The average number of observations per Section.

• Sparsity – The log (base two) of the fraction of non-zero entries in the matrix. That is,
log2 (|w|× |d|/ |(w,d)|) where |(w,d)| is the number from the second column.

• Entropy – As usual for a matrix: −∑w,d p(w,d) log2 p(w,d). Note that the log-base-two
means this is in bits. Here, (w,d) are word-disjunct pairs, i.e. sections. The probability is
actually a frequency: p(w,d) = N (w,d)/N (∗,∗).

• MI – As usual for a matrix: −∑w,d p(w,d) log2 p(w,d)/(p(w,∗) p(∗,d)).

Note that the MI score drops as words are trimmed from the dataset. All of those infrequently-
observed words carry a lot of information, it seems.

These are promising to be a lot cleaner, and stronger than the previous en_rfive dataset.

Issues

Update 7 July 2019: After the above sets were created, and the data analysis was performed
below, an issue was found with the quality of the data. When a sentence contained multiple
instances of a word, the resulting disjuncts involving that word are incorrect: they include the
multiple instances, and sometimes get the order wrong (being confused about which is which).
Thus, the datasets are polluted with bad disjuncts. It is unclear whether this hurts the data very
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much. I’m guessing it makes only a small difference, because: (1) there are few sentences
containing words with multiple instances, and (2) the counts on these crazy-bad disjuncts are
low (because they are infrequent) and so they probably mostly do not survive the count cutoffs.
... But some do survive; the bug was first discovered in the “mini” dataset, so bad stuff did get
into that. Fixed in https://github.com/opencog/atomspace/pull/2252

1.4 Grammars

A grammar is obtained by clustering words into grammatical classes. A variety of different clus-
tering strategies and clustering parameters were used to obtain several grammars. See the files
learn/scm/gram-agglo.scm and learn/scm/gram-projective.scm for details
about how clustering is done. Results are reported in multiple tables.

First table: summary report for the first four survey sets. The second table is like the first; it
just explores more parameter settings. These are just a rough first-cut, and are not expected to
be good, for five reasons:

• These use the cosine-distance metric (I expect the MI metric to be much better).

• Parameters are not tuned (some parameters were picked that seemed reasonable to start
with; the second table explores some tuning.)

• Clustering is only weakly sensitive to distinct word-senses; a quasi-linear merge of obser-
vation counts is used. When a word is placed into a cluster, the counts of any shared dis-
juncts are transfered to the cluster. This leaves behind a left-over word-vector, containing
disjuncts that did not fit into the cluster. This remainder represents a second word-sense
for that word; it’s part of how WSD happens “automatically” in these algorithms. These
left-over bits are either being reclustered, if possible, unless the remaining counts are tiny,
in which case they are discarded. A more refined clustering algo would replace this quasi-
linear merge with a disjunct-by-disjunct decision, to minimize the accidental mixing of
disjuncts that should have been associated with different word-senses.

• The disjunct-shapes are not being clustered (“shapes” are disjuncts with wild-cards in
them; see elsewhere for a detailed explanation. I expect that cluster quality will improve
when shapes are included.)

• Link-types are being clustered badly; that is, connectors are not being assigned properly
to word-classes (i.e. the “sheaves” concept is not being used.) The current code over-
generalizes: if it finds a link between two words, then it automatically promotes that to
a link between all word-classes that those word belong to. This creates linkages between
word-senses that should have been kept distinct. It also leads to a combinatoric explostion
in the parser. This desperately needs to be fixed.

Solutions to all of these issues are explored in Chapter 3.
All columns in the tables are obtained from the gram-class matrix report. That is, the matrix-

rows are now grammatical classes, not words. The matrix columns are still word-disjuncts, not
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gram-class disjuncts (this is partly related to the “shapes” problem). A correct grammar would
use gram-classes in the connectors as well. So again – this is a rough cut.

The table is much like the above:

• Size – Number of grammatical class x Number of disjuncts. Note that many of these
classes are “singleton classes”, containing only one word. See the WC and Sing columns
for a breakout of the number of classes with one and more than one word. WC+Sing
equals the total.

• Secs – Total number of Sections. That is, total number of word-disjunct pairs in the matrix.

• Obs’ns – Total number of observations of Sections. How many have been observed.

• Entropy – As before, just using gram-classes instead of words.

• MI – As before, just using gram-classes instead of words.

• WC – Number of grammatical classes with two or more words in them.

• Sing – Number of singleton classes – that is, classes with only one word in them.

The table below shows only the basic-baseline datasets. There are more, which explore addi-
tional parameters.

Size Secs Obs’ns Entropy MI WC Sing Dataset
675 x 67K 142K 12.0M 13.75 4.03 135 540 en_micro_fuzz_exp
416 x 67K 133K 11.4M 13.23 3.62 124 292 en_micro_discrim

3692 x 269K 502K 16.6M 15.39 4.35 366 3326 en_mini_fuzz_exp
2468 x 269K 499K 15.5M 14.76 3.89 371 2097 en_mini_discrim

The datasets are:

• en_micro_fuzz_exp – Created with (gram-classify-greedy-fuzz 0.65 0.3
4). This dataset does not have LEFT-WALL linkages in it. Created from en_micro_marg.
Here, the parameter 0.65 is the cosine-distance cutoff; vectors with a cosine distance less
than this are not clustered. The parameter 0.3 is the broadening parameter: it means that
30% of the counts of disjuncts NOT already in the cluster are added to the cluster. This
makes the cluster boundaries “fuzzy”, whence the name.

• en_micro_discrim – Created with (gram-classify-greedy-discrim 0.5 4).
Casual observation shows the clusters are less accurate than above. The parameter 0.5
is the cosine-distance cutoff. The broadening is not fixed; broadening is accomplished
by assigning anywhere from 0% to 100% of the non-shared disjunct counts to the cluster,
varying linearly by cosine distance (e.g. if the distance is 0.83, then (0.83-0.5)/0.5=66%
of the counts will be merged).

• en_mini_fuzz_exp – Just like en_micro_fuzz_exp, but with a larger vocabulary, from
en_mini_marg.
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• en_mini_discrim – Just like en_micro_discrim, but with a larger vocabulary, from en_mini_marg.

The table below is much like that above, except that it explores a greater range of learning
parameters. It is trying to get a sense of where the sweat spot is.

Size Secs Obs’ns Entropy MI WC Sing Dataset
680 x 67K 143K 13.2M 14.08 3.95 136 544 en_micro_fuzzier
948 x 67K 155K 12.6M 14.23 4.29 115 833 en_micro_fizz
672 x 67K 142K 12.1M 13.75 4.00 135 537 en_micro_diss
948 x 67K 155K 12.5M 14.19 4.30 115 833 en_micro_dissier
1260 x 67K 168K 13.7M 14.66 4.46 85 1175 en_micro_dissiest
416 x 67K 133K 11.4M 13.23 3.62 124 292 en_micro_rediscrim
91 x 67K 160K 16.5M 13.51 2.79 34 57 en_micro_disinfo

279 x 67K 196K 14.3M 14.27 3.65 70 209 en_micro_disinfo3

The datasets are:

• en_micro_fuzzier – Created with (gram-classify-greedy-fuzz 0.65 0.6 4).
Note the fuzz parameter is 0.6 not 0.3 as before. This means that when a words is being
merged into an existing word-class, it will merge in 60% of the non-shared disjuncts from
the new word. This will probably harm word-sense disambiguation. However, WSD
probably plays a small role, at this time.

• en_micro_fizz – Created with (gram-classify-greedy-fuzz 0.75 0.3 4).
The fuzz parameter is the same as for en_micro-fuzz, but the discriminator is tighter –
0.75 instead of 0.65.

• en_micro_diss – Created with (gram-classify-greedy-disc rim 0.65 4).
Similar to en_micro_discrim, but more discriminating (0.65 instead of 0.5).

• en_micro_dissier – Created with (gram-classify-greedy-disc rim 0.75 4).
Similar to en_micro_discrim, but more discriminating (0.75 instead of 0.5).

• en_micro_dissiest – Created with (gram-classify-greedy-disc rim 0.85 4).
Similar to en_micro_discrim, but more discriminating (0.85 instead of 0.5).

• en_micro_rediscrim – Created with (gram-classify-greedy-discrim 0.5 4).
These are exactly the same parameters as used for en_micro_discrim, but after fixing a bug
in the algo. The cosines were being calculated incorrectly; the denominator of the cosine
(the lengths) were not being recomputed after a merger; thus, all cosine angles were off
– maybe by a lot... Despite this, it appears that the number of learned classes is the
same as before, ditto the singletons, and the entropy and MI are unchanged! In fact, the
matrix-summary report suggests that this dataset is identical to en_micro_discrim, which
is unexpected, as the bug seemed to be real...
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• en_micro_disinfo – Created with (gram-classify-greedy-disinfo 2.0 4).
This uses the same projective clustering as before, but uses MI instead of cosine for clus-
tering decisions. Note that an MI=2.0 is very low; this placed almost all words into some
cluster.

• en_micro_disinfo3 – Created with (gram-classify-greedy-disinfo 3.0 4).
As above, but higher MI cutoff.

1.5 Measurements

There does not appear to be any good way to assess the quality of a grammar. So instead, a trick
is used that is obviously flawed, but is “better than nothing”. The trick is to compare the grammar
to the LG English dictionary. That is, a sentence is parsed, once with the grammar-under-test,
and once with the LG English grammar. The parses are compared side-by-side, looking to see
if they have the same links between words, or not. This allows both precision and recall to be
measured: A linkage is high-precision, if it does not contain link that it shouldn’t. A linkage has
high recall, if it contains most of the links that it should.

There are obvious problems with this:

• There is no particular reason to believe that the above algorithms will reproduce LG dic-
tionaries. This is a comparison of apples-to-oranges: the learned dictionaries are obtained
by apply probability theory to sparse observational data of strings of words. By contrast,
the LG dictionary is hand-curated, by linguists applying innate, common-sense theories of
grammatical relationships. The resulting linkages are just opinions expressed by linguists
as to what English must be like. That there is significant overlap between statistical results
and linguist opinion is itself remarkable.

• The LG English dictionary is imperfect, sometimes creating incorrect parses. Thus, it
is possible that the grammar-under-test produced a better parse, while still being scored
poorly, because it failed to match LG.

• LG parses in general contain loops, i.e. are not trees. The grammar-under-test might also
contain loops, but maybe less than LG. Thus, the grammar-under-test will often have a
low recall, simply because of how it was built. Using a non-strict MST at earlier stages
might improve the situation.

• Some links are more important than others. It is more important to get links to subject
and object correct, than it is to get links to punctuation correct. In particular, LG links
to punctuation are rather ad hoc, especially for the end-of-sentence punctuation. It is
unlikely that the grammar-under-test will handle punctuation the same way.

• If there is a combinatorial explosion of LG parses, then the parse-scoring system in LG
is partially blinded, and the resulting chosen parses might not be the ones with the best
scores. It might be possible to ameliorate this with changes to LG.
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Thus, due to the above concerns, the actual meaning of the scores is unclear. Never the less, its a
good starting point. Some future version of the measurement tool will keep track of subject and
object links, and maybe other link types that are considered important.

Currently, all of the dictionaries-under-test are missing a LEFT-WALL marker. I’m not sure
why; this will be revisited later. Thus, LEFT-WALL links are not compared, and are not a part
of the evaluation process.

The test-corpora contain many words not in the dictionary, and vice-versa: the dictionaries
contain many words not in the test-corpora. The overlap between these two vocabularies is
shockingly small (but perhaps entirely normal – see extended commentary about Zipf’s law,
elsewhere). In particular, the “micro” dictionaries have only 1.6K words in them, and of these,
less than a third show up in the test corpora. Thus, we have three testing options:

• Skip the evaluation of a sentence, if it contains words that are not in the dictionary-under-
test. The test corpora contain a lot of proper names that never appeared in the training
corpora, and this alone accounts for many of the sentence rejections.

• Evaluate the sentence anyway; words not in the dictionary will be null-linked (i.e. have no
links going to them.) Mostly all that happens is that precision scores are mostly unaffected,
while recall scores are obviously lower.

• Perform unknown-word-guessing. This is not hard to do, and ultimately is a required
ability for any dictionary usable in the real world. The current guessing strategy is to try
each unknown word with each gram-class, and then let the parse-scoring system pick the
one with the highest score. Note that unknown-word guessing leads to a combinatoric
explosion in LG, which can cause extremely long parse-times (hours!); see notes below.
Combinatoric explosions can also result in sub-optimal choice of linkage. The determina-
tion of the pertinence of this effect is TBD.

Two sets of dictionaries were created: with and without unknown words. Results for both are
reported below.

Comparisons were performed for five different corpora. These are also an imperfect choice,
but adequate for this initial rough-cut evaluations. The are:

• CDS – The “Child Directed Speech” corpus from the ULL project. Contains 1837 sen-
tences uttered by parents towards children. These have a characteristically small vocab-
ulary, and a simple grammatical structure. Average length is 5 words per sentence. This
corpus consistently results in the highest scores during testing, for all test dictionaries.

• basic – The corpus-basic.batch file from LG. This contains 1000 sentences, of
which 421 are intentionally ungrammatical, leaving 579 valid English sentences. These
contain a balanced selection of a wide variety of different kinds of English constructions; it
was meant to showcase the rich variety of different sentences that LG can handle. (Note,
however, that evolving fixes means that not all of these parse correctly). Most of these
sentences are of short-to-medium length.

• fixes – The corpus-fixes.batch file from LG. This contains 4236 sentences, illus-
trating fixes to the early versions of the LG dictionary. Although there is a wide variety of
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different kinds of English constructions, it’s not particularly “balanced”, and the sentences
tend to be short; just long enough to illustrate some phenomenon. Most of these sentences
are of short length.

• gold – The “Golden Corpus” from the ULL project. This contains 229 sentences. Note
that the parses provided by the ULL project are NOT used for evaluation. The LG parses
are used instead. Most of these sentences are medium-short.

• silver – A subset of the “Silver Corpus” from the ULL project. This contains 2513 sen-
tences, taken from three different Project Gutenberg books: “Kilmeny of the Orchard”
by Lucy Maud Montgomery; “Peter Rabbit” by Thornton W Burgess; and a portion of
“Under the Lilacs” by Louisa May Alcott. Average sentence length is 12 words.

• wiki – A concatenation of three Wikipedia articles: “Autoethnography”, “Astor House
Hotel (Shanghai)” and “History of Virginia”. All of these sentences are long, averaging
24 words in length. The long sentence length can lead to combinatorial explosions in most
of the dictionaries, resulting in painfully long parse times.

All five corpora are available in the learn/run/3-gram-class/test-data directory.
Measurements were performed with the script learn/run/3-gram-class/dict-comp.scm

specifying the dictionary to test and the corpus as

guile -s learn/run/3-gram-class/dict-comp.scm <dict-to-test> <corpus>

The table below shows results. The columns in the table are as follows:

• Sents – The total number of sentences in the corpus. This repeats the number given above.

• Skip – Percentage of total sentences that were skipped, because they contained unknown
words. (Reported only when unknown-word guessing is disabled.)

• Parsed – The number of sentences that were evaluated. Equal to number of sentences
times (100% - Skip).

• Diff – The number of sentences that had parses that differed from the first parse given by
the English dictionary in Link Grammar version 5.6.1.

• Words – The total number of words in the evaluated sentences. This varies from dictio-
nary to dictionary, depending on whether sentences were skipped or not.

• Vocab – The size of the vocabulary in the evaluated sentences; that is, the number of
unique words. When rejecting sentences with unknown words, this becomes the intersec-
tion of the vocabulary of the accepted sentences and the dictionary-under-test.

• Links – The number of links that the LG English parse generated. This varies from
dictionary to dictionary, depending on whether sentences were skipped or not.
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• P – Precision of links: TP/(TP+FP) where TP is the count of the links that both dictionaries
generated, and FP is the count of the links that the dictionary-under-test generated, but LG
did not.

• R – Recall of the links: TP/P where TP as above, and P the total number of links produced
by the LG English parse.

• F1 – The harmonic mean of precision and recall.

Results for the micro-fuzz dataset. This is a tiny dataset, with only 1600 words in it; its the first
shot at anything even vaguely workable. Not expecting good results. But they seem passable.
Most sentences got skipped, because they contained unknown words, but the ones that did parse
seem to not be outrageous. Notice the intersection of the test-corpus vocabulary and the dictio-
nary size is small – about 1/3rd of the dictionary size, or less. That is a small vocabulary; so
2/3rds of the dictionary contains words that are not in the test-corpus!

micro-fuzz
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 69% 562 90% 2738 176 2369 0.705 0.473 0.566
basic 579 86% 82 99% 666 209 647 0.627 0.371 0.466
fixes 4236 82% 774 97% 4888 589 3770 0.534 0.399 0.457
gold 229 90% 24 92% 169 95 132 0.577 0.485 0.527
silver 2513 85% 377 100% 3323 527 2852 0.545 0.407 0.466

Not all link-types are created equal. Correct links to the subject and object should be consid-
ered to be more important, than ambient links to punctuation. Thus, consider placing the LG
link-types into four categories: important, less important, and the others. The categories that
seemed about right were these:

• Primary – the S O MV SI CV link types – these point out the subject, object, important
modifiers and dependent clauses.

• Secondary – the A A AN B C D E EA G J M MX R link types – these connect to
various modifiers, determiners, relative phrases.

• Punctuation – the X link type. The LG dictionary has rational rules for how to treat
punctuation, but there is no particular reason to think that counting statistics will adhere
to this.

• Other – all other link types. Yes, they are important, but one might expect that counting
statistics might not adhere to the LG dictionary decisions.

Glancing at this table, there is no obvious indication that the important (primary) links are gotten
correct more than the other links. Perhaps the MV link does not belong in the primary category?
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micro-fuzz
Dataset Primary N Secondary N Punct N Other N

CDS 0.506 1019 0.465 617 - 0 0.434 733
basic 0.387 243 0.317 158 0.2 5 0.394 241
fixes 0.424 1317 0.388 880 0.237 207 0.406 1366
gold 0.483 58 0.447 47 - 0 0.600 25
silver 0.385 1071 0.402 731 0.434 76 0.434 974

Results for micro-discrim below. The gram classes are looser (the cutoff is lower - 0.5 instead
of 0.65 as above), and casual inspection (i.e. just reading the list of words in each) suggests that
they are lower quality (from eyeballing, it’s clear that many dissimilar words are being classed
together). This behaves in a not-too-surprising way: precision drops (more junk links produced),
while recall improves (the junk links just happen to go to the right places). Overall F1 score is
better, which is surprising. Same base vocab of 1600 words. The values in the Sents, Skip,
Parsed, Words, Vocab, Links columns are unchanged, since both this and above are built on the
en_micro_marg dataset.

micro-discrim
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 69% 562 88% 2738 176 2369 0.679 0.542 0.603
basic 579 86% 82 99% 666 209 646 0.595 0.412 0.487
fixes 4236 82% 774 97% 4888 589 3770 0.529 0.476 0.501
gold 229 90% 24 92% 169 95 131 0.565 0.534 0.549
silver 2513 85% 377 99% 3323 527 2844 0.546 0.490 0.522

As before, there is no particularly obvious trend visible in the recall of the link-types.

micro-discrim
Dataset Primary N Secondary N Punct N Other N

CDS 0.562 1018 0.594 618 - 0 0.469 733
basic 0.388 240 0.357 157 0.2 5 0.475 244
fixes 0.489 1313 0.480 880 0.382 207 0.477 1370
gold 0.448 58 0.511 47 1 1 0.760 25
silver 0.457 1074 0.507 726 0.521 73 0.538 971

Results below for mini-fuzz. This dictionary has a much larger vocabulary: 7385 words in-
stead of 1600 as above. Several large differences are apparent: considerably fewer sentences
get skipped due to unknown vocabulary (but still more than half!) The mini dictionaries contain
7385 words, and at most 1/5th of them appear in the test corpora. This lack of overlap is remark-
able! Compared to micro-fuzz, the results are mixed. Precision is mostly the same, sometimes
lower; recall is mostly the same or lower and F1 is mostly the same, bouncing around a bit,
sometimes higher and sometimes lower than the micro variant.
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mini-fuzz
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 54% 850 91% 4222 238 3649 0.710 0.480 0.573
basic 579 59% 232 100% 1944 465 1864 0.580 0.376 0.456
fixes 4236 57% 1767 97% 12122 1425 9748 0.540 0.399 0.459
gold 229 72% 64 100% 449 228 343 0.504 0.362 0.421
silver 2513 62% 943 99% 9859 1308 8793 0.531 0.392 0.451

Recall of link-types:

mini-fuzz
Dataset Primary N Secondary N Punct N Other N

CDS 0.503 1524 0.480 1022 - 0 0.450 1103
basic 0.320 640 0.364 544 0.344 32 0.443 648
fixes 0.398 3373 0.419 2570 0.432 463 0.379 3342
gold 0.314 140 0.384 125 0.6 5 0.397 37
silver 0.357 3111 0.393 2514 0.494 328 0.418 2840

Below for mini-discrim. Compared to mini-fuzz, the precision is mostly unchanged; mixed.
Recall is consistently higher, a lot higher, which brings up the F1 scores across the board. This
is a lot like the difference between micro-discrim and micro-fuzz. The difference between the
discrim and fuzz variants is that the discrim variant uses a sigmoid merger proceedure, instead
of a fixed fraction. The sigmoid appears to make an important quality difference.

mini-discrim
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 53% 850 90% 4222 238 3648 0.658 0.538 0.592
basic 579 55% 232 99% 1944 465 1878 0.590 0.452 0.512
fixes 4236/3921 53% 1767 98% 12122 1425 9753 0.522 0.469 0.494
gold 229 67% 64 95% 449 228 343 0.516 0.475 0.495
silver 2513/2138 56% 943 100% 9859 1308 8840 0.532 0.475 0.502

1.6 Unknown word guessing

Having tiny vocabularies is disastrous for understanding text. Can one automate the guessing
of unknown words? Of course one can! The default LG parser has an “UNKNOWN-WORD”
mechanism, whereby any word that does not appear in the dictionary is defaulted to a col-
lection of UNKNOWN-WORD entries, each carrying a set of associated disjuncts. Multiple
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UNKNOWN-WORD entries are allowed, in order to simplify disjunct management; however,
when they are used, they are all used, and no preference is given for one over another.

The tactic obvious tactic to use in the current situation is to insert one UNKNOWN-WORD
marker for each grammatical class. The effect will be that, during parsing, each unknown word
will be tried out with each gram-class. When a parse is found, the tag on the UNKNOWN-
WORD entry will indicate which class was used. When multiple parses are found, they are
ranked according to the total word-disjunct MI for the sentence. The dictionaries evaluated in
this section are the same ones as those above, except that one UNKNOWN-WORD entry was
added for each gram class containing two or more members; singleton-classes were ignored.

The use of the UNKNOWN-WORD mechanism can (and does) lead to a combinatoric ex-
plosion during parsing. Naively, one might expect a runtime of O

(
Nk

)
for k unknown words

in the sentence; here N is presumably the total of all disjuncts in all candidate classes, as each
is tried against the next as a possible match. For these dictionaries, N varies from 1K to 100K,
and so it seems that sentences with 3,4,5 unknown words might take hours to parse. Hours is
really bad. We are patient, here, but clearly, something needs to be done to avoid the bog-down.
In practice, the actual slow-down is highly variable from dictionary to dictionary, as a preparse-
pruning stage can decimate N down to a reasonable number quite effectively ... most of the time.
However, some dictionaries choke on some sentences.

We expect 100% of the sentences to be covered, so this is a big change from before. Two
columns from earlier tables are omitted, since all of the test-corpus is parsed and compared.
Since LG will run on every sentence in each test-corpus, the total number of observed words,
and the total known-vocabulary will be the same for all of the different dictionaries-under-test.
These are reported just once, below.

Dataset Sents Words Vocab Links
CDS 1832 9274 300 7950
basic 579 4862 1117 4701
fixes 4236 28528 4082 23213
gold 229 1895 782 1539
silver 2513 30079 3657 27297

Here are the results for micro-fuzz, with unknown-word-guessing enabled. Recall, the pa-
rameters were (gram-classify-greedy-fuzz 0.65 0.3 4). Compared to the same
dataset without guessing, the resulting precision and recall changes erratically, sometime moving
up, or down, depending on the test corpus. The overall F1 is unchanged or improved. Conclu-
sion: adding unknown-word guessing vastly improves coverage, and also helps F1.

micro-fuzz-unk (fuzz 0.65 0.3)
Dataset Sents Diff P R F1

CDS 1832 76% 0.660 0.541 0.595
basic 579 98% 0.555 0.440 0.491
fixes 4236 96% 0.502 0.459 0.479
gold 229 99% 0.484 0.468 0.476
silver 2513 100% 0.492 0.445 0.467
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For micro-fuzzier-unk: almost no difference at all from the above. Note that both have almost
exactly the same number of grammatical classes (135 vs. 136) and so unknown-word guessing
seems to be unaffected.

micro-fuzzier-unk (fuzz 0.65 0.6)
Dataset Sents Diff P R F1

CDS 1832 88% 0.657 0.538 0.592
basic 579 97% 0.557 0.441 0.493
fixes 4236 97% 0.501 0.458 0.478
gold 229 99% 0.479 0.461 0.470
silver 2513 100% 0.490 0.443 0.465

Below is micro-fizz-unk, which uses a cosine-cutoff of 0.75. Comparing to micro-fizz-unk with
a cutoff of 0.65, it seems that precision is mostly unchanged. Recall is sharply down, and so, for
the most part, the F1 scores are down.

There are two possible explanations for this difference:

1. The tighter discriminator results in narrower gram classes, which have trouble hooking up
into a good parse. Here, “narrower” means that each gram class has fewer disjuncts in it.

2. The micro-fizz-unk dictionary has fewer grammatical classes (115 vs 135), which, in ad-
dition to each class being narrower, causes unknown word guessing to struggle.

Disentangling these effects is not obvious.

micro-fizz-unk (fuzz 0.75 0.3)
Dataset Sents Diff P R F1

CDS 1832 90% 0.665 0.486 0.562
basic 579 98% 0.555 0.403 0.467
fixes 4236 97% 0.495 0.419 0.454
gold 229 98% 0.471 0.428 0.449
silver 2513 100% 0.483 0.402 0.439

Here is for micro-discrim-unk; it should be compared to micro-discrim, which uses the same
algo and parameters, but doesn’t have word-guessing built in. Changes to precision, recall and
F1 are mixed, depending on the dataset. It seems that unknown-word guessing didn’t have much
of an effect.

Compared to micro-fuzz-unk, the change in precision is mixed, the recall is noticeably better,
resulting in better F1 scores overall. This reaffirms an earlier observation: the discrim algo
produces better data than the fuzz algo.
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micro-discrim-unk (discrim 0.5)
Dataset Sents Diff P R F1

CDS 1832 83% 0.651 0.580 0.614
basic 579 98% 0.571 0.482 0.523
fixes 4236 97% 0.496 0.490 0.493
gold 229 99% 0.475 0.497 0.485
silver 2513 100% 0.507 0.491 0.499

Here is micro-diss-unk. It should be compared to two different dictionaries: micro-discrim-
unk, immediately above, which uses the same clustering algo, but a weaker cutoff, also to micro-
fuzz-unk, which uses a different clustering algo, but the same cutoff. Note that when the cutoff
is the same, both produce the same number of grammatical classes (135, either way). The looser
cutoff produces fewer classes (124); presumably each class is larger. This does not resolve the
question of whether it is the sharpness of the classes that matter, or their raw number. Perhaps
these effects cannot be disentangled...

Based on prelim incomplete numbers: the algo don’t matter very much, the discrim does.

micro-diss-unk (discrim 0.65)
Dataset Sents Diff P R F1

CDS 1832 88% 0.654 0.537 0.590
basic 579 98% 0.560 0.440 0.493
fixes 4236 100% 0.503 0.459 0.480
gold 229 99% 0.482 0.466 0.474
silver 2513 100% 0.493 0.443 0.467

Here’s micro-dissier-unk: it can be compared to the above, which uses a weaker cutoff, or to
micro-fizz-unk, which uses the same cutoff. The sharper cutoff is having little effect on precision.
It is forcing down recall, and thus F1.

micro-dissier-unk (discrim 0.75)
Dataset Sents Diff P R F1

CDS 1832 92% 0.660 0.481 0.556
basic 579 98% 0.559 0.406 0.471
fixes 4236 97% 0.493 0.417 0.451
gold 229 99% 0.464 0.421 0.442
silver 2513 100% 0.487 0.405 0.442

Here’s micro-dissiest-unk, with a sharp cutoff still. Precision drops, recall drops, F1 drops.
Conclusion: it is quite possible to make the classes too narrow.
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micro-dissiest-unk (discrim 0.85)
Dataset Sents Diff P R F1

CDS 1832 93% 0.666 0.441 0.531
basic 579 98% 0.536 0.343 0.418
fixes 4236 97% 0.487 0.365 0.417
gold 229 99% 0.430 0.357 0.390
silver 2513 100% 0.462 0.339 0.391

Below is mini-fuzz-unk. It is to be compared to micro-fuzz-unk, which uses the same parame-
ters, but has a smaller vocabulary.

it appears that ... mixed results ...

mini-fuzz-unk (fuzz 0.65 0.3)
Dataset Sents Diff P R F1

CDS 1832 87% 0.677 0.529 0.594
basic 579/529 99% 0.559 0.393 0.461
fixes 4236 97% 0.498 0.412 0.451
gold 229 99% 0.451 0.387 0.416
silver 2513 100% 0.490 0.409 0.446

The basic corpus contains sentences that took excessive times to parse with this dictionary;
as a result, those sentences were skipped. The second, smaller number indicates the number
of setences that did not time-out. Compared to mini-discrim (same dictionary, but skipping
sentences with unknown words), this is a wash – precision is mostly lower, just a bit, recall is
mostly higher, just a bit, and F1 is about the same, varying. Conclusion: unknown word guessing
does not hurt, and sometimes helps. Compared to micro-discrim-unk, (same algorithm applied
to a much smaller dataset; both use unknown-word-guessing) this has a slightly better precision,
slightly lower recall, and F1 is the same or slightly worse. Apparently, unknown-word-guessing
with a small vocabulary is pretty much as good as that for a bigger vocabulary (and neither are
terribly good). So, increasing vocabulary size, in and of itself, does not offer any benefit, with
the algos as they currently stand.

mini-discrim-unk (discrim 0.5)
Dataset Sents Diff P R F1

CDS 1832 85% 0.650 0.566 0.605
basic 579/491 55% 0.581 0.462 0.515
fixes 4236/3631 97% 0.508 0.478 0.492
gold 229 99% 0.460 0.444 0.452
silver 2513/2138 100% 0.512 0.474 0.492
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Cosine Redo

It appears that there was a bug in the cosine calculations for all of the datasets reported above.
The results below come from a re-do. It appears to improve both precision and recall by a fair
amount. Since the change did not affect the overall number of classes found, this would suggest
that both the buggy and the revised dictionaries have clusters with the same members, and that
the primary reason for the score difference is the differrent sigmoid! This is ... remarkable.

micro-rediscrim-unk (discrim 0.5)
Dataset Sents Diff P R F1

CDS 1832 83% 0.660 0.590 0.623
basic 579 98% 0.569 0.481 0.521
fixes 4236 97% 0.510 0.505 0.508
gold 229 99% 0.498 0.517 0.507
silver 2513 100% 0.507 0.491 0.499

1.7 Graphs

Reading the above tables is hard. It is easier to see what is going on with graphs. Here. The first
figure shows precision as a function of dataset MI for three of the corpora (there is some missing
data, still coming in.)
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The one below shows recall as a function of dataset MI.
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Finally, the reciprocal mean of the two, aka the F1-score. Judging from the slope, its now
clear that the loss in recall dominates the gain in precision.
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1.8 Conclusions for Part I

The following conclusions can be made for the above baseline measurements.

• Taken as a proof-of-concept, the pipeline seems to work, and provides a stable foundation
for further research.

• Tighter clustering only marginally improves precision, but sharply damages recall. Given
a choice, looser clustering improves the overall coverage of the dictionary. In effect, the
dictionary understand more, even if it doesn’t understand it quite as well.

• The sigmoid taper decision used in the discrim merge algo, vs. the fuzz algo seems to
make an important improvement in quality. Accidental tweaks seem to further improve
scores. This suggests that the manner of clustering has an important effect.
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• Larger dictionaries with larger vocabularies provide only mixed results. The scores are
roughly the same, which is surprising. Tiny vocabularies with effective unknown-word
guessing are mostly just as good as larger vocabularies (with unknown word guessing).
This indicates that the current algos are not effectively extracting any extra info from the
larger vocabularies!

• Unknown-word guessing by the parser appears to be an effective strategy for broadening
the coverage of the dictionary.
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2 ULL Dictionary Measurements

Same procedures as above, applied to the ULL dictionaries. These are provided by Anton
Kolonin and his crew, and are generated using completely different software pipeline, described
elsewhere.

Results presented below; this uses the same measuring techniques as above. Each grammar
is measured twice: once, by looking at all sentences; and a second time, skipping sentences that
contained words not in the dictionary.

These measurements indicate that two major breakthroughs have been made in the ULL
project. These are:

• Results from the ull-lgeng dataset indicates that the ULL pipeline is a high-fidelity trans-
ducer of grammars. The grammar that is pushed in is the effectively the same as the
grammar that falls out. If this can be reproduced for other grammars, e.g. Stanford,
McParseface or some HPSG grammar, then one has a reliable way of tuning the pipeline.
After it is tuned to maximize fidelity on known grammars, then, when applied to unknown
grammars, it can be assumed to be working correctly, so that whatever comes out must in
fact be correct.

• The relative lack of differences between the ull-dnn-mi and the ull-sequential datasets
suggests that the accuracy of the so-called “MST parse” is relatively unimportant. Any
parse, giving any results with better-than-random outputs can be used to feed the pipeline.
What matters is that a lot of observation counts need to be accumulated so that junky
parses cancel each-other out, on average, while good ones add up and occur with high
frequency. That is, if you want a good signal, then integrate long enough that the noise
cancels out.

A third item should be mentioned:

• It appears that the Project Gutenberg training corpus does not appear to be a good sample
of the English language. When the learned dictionaries are applied to other corpora, the
scores are disastrously bad!

These are strong claims. Lets look at the results justifying them.

ULL Results

The ULL team provided four dictionaries. These are analyzed below.
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ull-lgeng Based on LG-English parses: obtained from http://langlearn.singularitynet.io/data/aglushchenko_parses/GCB-
FULL-ALE-dILEd-2019-04-10/context:2_db-row:1_f1-col:11_pa-col:6_word-space:discrete/

I believe that this dictionary was generated by replacing the MST step with a parse where
linkages are obtained from LG; these are then busted up back into disjuncts. This is an interesting
test, because it validates the fidelity of the overall pipeline. It answers the question: “If I pump
LG into the pipeline, do I get LG back out?” and the answer seems to be “yes, it does!” This is
good news, since it implies that the overall learning process does keep grammars invariant. That
is, whatever grammar goes in, that is the grammar that comes out!

This is important, because it demonstrates that the apparatus is actually working as designed,
and is, in fact, capable of discovering grammar in data! This suggests several ideas:

• First, verify that this really is the case, with a broader class of systems. For example, start
with the Stanford Parser, pump it through the system. Then compare the output not to LG,
but to Stanford parser. Are the resulting linkages (the F1 scores) at 80% or better? Is the
pipeline preserving the Stanford Grammar? I’m guessing it does...

• The same, but with Parsey McParseface.

• The same, but with some known-high-quality HPSG system.

If the above two bullet points hold out, then this is a major breakthrough, in that it solves a major
problem. The problem is that of evaluating the quality of the grammars generated by the system.
To what should they be compared? If we input MST parses, there is no particular reason to
believe that they should correspond to LG grammars. One might hope that they would, based,
perhaps, on some a-priori hand-waving about how most linguists agree about what the subject
and object of a sentences is. One might in fact find that this does hold up to some fair degree,
but that is all. Validating grammars is difficult, and seems ad hoc.

This result offers an alternative: don’t validate the grammar; validate the pipeline itself. If the
pipeline is found to be structure-preserving, then it is a good pipeline. If we want to improve
or strengthen the pipeline, we know have a reliable way of measuring, free of quibbles and
argumentation: if it can transfer an input grammar to an output grammar with high-fidelity, with
low loss and low noise, then it is a quality pipeline. It instructs one how to tune a pipeline for
quality: work with these known grammars (LG/Stanford/McParse/HPSG) and fiddle with the
pipeline, attempting to maximize the scores. Built the highest-fidelity, lowest-noise pipeline
possible.

This allows one to move forward. If one believes that probability and statistics are the correct
way of discerning reality, then that’s it: if one has a high-fidelity corpus-to-grammar transducer,
then whatever grammar falls out is necessarily, a priori a correct grammar. Statistics doesn’t lie.
This is an important breakthrough for the project.

Lets now look at the actual data. First, the results when all sentences are parsed, including
those with unknown words. Since the ULL dictionaries take no special steps to treat unknown
words, the results are not terribly inspiring. The precision for gold/silver is quite high: recall that
gold/silver are based on a selection of Gutenberg texts, the same class as the training set, and
so high precision is commendable. Recall suffers a bit, but F1 is passable. When tested against
corpora that are quite different from the training set, its a bit of a disaster: recall drops through
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the floor. It would seem that the basic/fixes corpora contain sentences that are very different than
the Gutenberg texts. This is unfortunate; it suggests that the Gutenberg texts do not provide an
adequate sample of the English language.

ull-lgeng
Dataset Sents Diff P R F1

CDS 1832 93% 0.828 0.293 0.433
basic 579 100% 0.718 0.134 0.226
fixes 4236 98% 0.770 0.147 0.246
gold 229 100% 0.960 0.699 0.809
silver 2513 100% 0.904 0.599 0.720

The table above shows results when all sentences are tested; the table below when sentences
with unknown words are skipped. Here, the picture brightens considerably! For gold/silver, the
accuracy goes up, almost maxing out for gold. The recall shoots way up as well, with the F1
scores on gold/silver being just fantastic! It is based on these two lines that the above claims of
a breakthrough are founded. If this can be reproduces for Stanford/McParse/etc. we’re well on
the way!

The table also emphasizes the incompleteness of the Gutenberg training set. The recall scores
for basic/fixes are a complete disaster. Whatever is in that grammar, its not covering perfectly
common 20th-century English.

ull-lgeng
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 14% 1579 92% 7882 289 6757 0.832 0.310 0.452
basic 579 96% 25 100% 119 39 98 0.833 0.051 0.096
fixes 4236 93% 305 97% 1805 498 1552 0.749 0.146 0.245
gold 229 51% 113 12% 931 418 761 0.983 0.957 0.969
silver 2513 55% 1138 43% 12986 2146 11675 0.937 0.833 0.882

ull-sequential Based on "sequential" parses: obtained from http://langlearn.singularitynet.io/data/aglushchenko_parses/GCB-
FULL-SEQ-dILEd-2019-05-16-94/GL_context:2_db-row:1_f1-col:11_pa-col:6_word-space:discrete/

I believe that this dictionary was generated by replacing the MST step with a parse where
there are links between neighboring words, and then extracting disjuncts that way. This is an
interesting test, as it leverages the fact that most links really are between neighboring words.
The sharp drawback is that it forces each word to have an arity of exactly two, which is clearly
incorrect.
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ull-sequential
Dataset Sents Diff P R F1

CDS 1832 99% 0.651 0.058 0.107
basic 579 100% 0.542 0.026 0.050
fixes 4236 99% 0.473 0.128 0.202
gold 229 100% 0.585 0.518 0.549
silver 2513 100% 0.595 0.497 0.542

The table above shows results when all sentences are tested; the table below when sentences
with unknown words are skipped.

ull-sequential
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 14% 1579 99% 7882 289 6757 0.658 0.062 0.114
basic 579 96% 25 100% 119 39 98 1.000 0.031 0.059
fixes 4236 92% 308 99% 1821 503 1564 0.480 0.075 0.130
gold 229 51% 113 100% 931 418 761 0.610 0.656 0.632
silver 2513 55% 1138 100% 12986 2146 11675 0.615 0.623 0.619

ull-dnn-mi Based on "DNN-MI-lked MST-Parses": obtained from http://langlearn.singularitynet.io/data/aglushchenko_parses/GCB-
GUCH-SUMABS-dILEd-2019-05-21-94/GL_context:2_db-row:1_f1-col:11_pa-col:6_word-space:discrete/

I believe that this dictionary was generated by using the standard MST parse step, but using
“Bertram weights” derived from a neural net, instead of using word-pair MI scores.

ull-dnn-mi
Dataset Sents Diff P R F1

CDS 1832 97% 0.662 0.325 0.436
basic 579 100% 0.563 0.184 0.277
fixes 4236 98% 0.445 0.180 0.256
gold 229 100% 0.533 0.459 0.493
silver 2513 100% 0.524 0.421 0.467

The table above shows results when all sentences are tested; the table below when sentences
with unknown words are skipped. It appears that precision is higher or sharply higher, depending
on the corpus (sharply higher for basic/fixes, which are dissimilar from the training set, but only
a little higher for silver/gold, which are similar to the training set...) The effect on recall is the
opposite: recall is mixed for basic/fixes but sharply higher for silver/gold. Conclude that testing
with sets similar to the training sets does little for precision, but a lot for recall. Dis-similar test
corpora flip the other way. Overall, F1 is mostly higher.
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ull-dnn-mi
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 14% 1579 96% 7882 289 6757 0.668 0.340 0.451
basic 579 96% 25 100% 119 39 98 0.790 0.153 0.256
fixes 4236 92% 301 98% 1784 494 1531 0.550 0.218 0.312
gold 229 51% 113 99% 931 418 761 0.550 0.573 0.561
silver 2513 55% 1137 100% 12966 2142 11655 0.539 0.541 0.540

Comparing either of these to the ull-sequential dictionary indicates that precision is worse,
recall is worse, and F1 is worse. This vindicates some statements I had made earlier: the quality
of the results at the MST-like step of the process matters relatively little for the final outcome.
Almost anything that generates disjuncts with slightly-better-than-random will do. The key
to learning is to accumulate many disjuncts: just as in radio signal processing, or any kind of
frequentist statistics, to integrate over a large sample, hoping that the noise will cancel out, while
the invariant signal is repeatedly observed and boosted.

ull-mst-mi Based on "GCB-FULL-ANY-dILEd": obtained from http://langlearn.singularitynet.io/data/aglushchenko_parses/GCB-
FULL-ANY-dILEd-2019-05-09-94/GL_context:2_db-row:1_f1-col:11_pa-col:6_word-space:discrete/

I believe that this dictionary was generated by using the standard MST parse step, using
standard word-pair MI.

ull-mst-mi
Dataset Sents Diff P R F1

CDS 1832 96% 0.724 0.327 0.451
basic 579 100% 0.595 0.173 0.268
fixes 4236 98% 0.509 0.171 0.256
gold 229 100% 0.507 0.417 0.457
silver 2513 100% 0.517 0.382 0.439

The table above shows results when all sentences are tested; the table below when sentences
with unknown words are skipped.

ull-mst-mi
Dataset Sents Skip Parsed Diff Words Vocab Links P R F1

CDS 1832 14% 1579 95% 7882 289 6758 0.728 0.342 0.465
basic 579 96% 25 100% 119 39 98 0.667 0.122 0.207
fixes 4236 93% 298 98% 1758 492 1508 0.560 0.189 0.283
gold 229 51% 113 100% 931 418 760 0.514 0.542 0.528
silver 2513 55% 1138 100% 12986 2146 11745 0.521 0.509 0.515

Neither look as good as the ull-dnn-mi dataset.
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Open Questions

There are some things I do not understand about the ULL pipeline. These are:

• When the ULL pipeline clusters words together, what distance metric is used? Cosine?
Something else?

• How are link types clustered? That is, how does ULL determine if two links are similar,
and belong in the same class? What metric is use? (Clustering links is a distinct step from
clustering words; for ULL, I think tehse are somehow combined into one?)

• How are words merged into word-classes? I believe that when ULL decides that two words
are similar, a whole-sale merge all disjuncts into the word-class is performed, without any
attempt at setting aside the disjuncts that "don’t belong". Is that right? (Disallowing
the merger of disjuncts that "don’t belong" is the primary mechanism of WSD, so this is
important to understand.)

Without a clear description of these, its hard to tell what, exactly, ULL is doing.

2.1 Conclusions for Part II – ULL pipeline

There are several vitally important results gleaned from the ULL datasets. These suggest a
method for how to tune the language learning pipeline: it should be tuned to maximize the
fidelity of its action on known grammars. That way, when applied to new, unknown grammars,
it can be trusted to produce good results. A second conclusion is that the results are only weakly
dependent on the so-called “MST parse”. Anything that gives reasonably decent results at this
stage is good enough to fish out a grammar. A third conclusion was that the Project Gutenberg
corpora do not provide an adequate sample of modern English.

Contrasting to the Linas pipeline, one can also say:

• The Linas pipeline seems to be producing dictionaries with better coverage than the ULL
dictionaries. This is almost certainly due to only three factors: a training set that is broader
than just Gutenberg; a much larger training set, with probably an order of magnitude (or
two) more samples in it; the use of the unknown-word mechanism.

• Unknown-word guessing by the parser appears to be an effective strategy for broadening
the coverage of the dictionary; supporting this in the ULL pipeline is surely a good idea!

• The Linas pipeline should be tuned in the fashion that the tuning breakthrough suggests.
Without this, one is working blind.
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3 Info-theoretic Improvements

The results in Part 1 embodied several "known bugs", each of which needs to be fixed. These
are:

• Failure to use the Kullback-Liebler divergence instead of cosine distance. I argued last
summer about why KL is better than cosine distance, but my own code base has yet to
catch up with my theory. All of the Part I dictionaries used cosine distance.

• Failure to perform a fine-grained merge that distinguishes different word-senses. The Part
I merge algo was a quasi-linear merge that moved many/most of the disjunct counts from
a word into the word-class it was assigned to. This has the unintended effect of blurring
together distinct word-senses. A more fine-grained merge would make this decision on a
disjunct-by-disjunct basis, deciding when a disjunct belongs, and when it doesn’t. Such an
algo will be (when I get done writing it) a "binary optimization" algo (That is, an "integer
programming" algo with the integers restricted to 0 or 1: https://en.wikipedia.org/wiki/Integer_programming)
The algo chooses, on a disjunct-by-disjunct basis, whether that disjunct belongs to the
given word-sense, or not. I think I have an OK algo for this that can run in linear time;
written up in the diary, but not yet converted into code. This should improve WSD by a
lot. Maybe. Hmmm...

• Failure to cluster link-types/connectors. Part 1 used a brute-force combinatoric algo: if
there was a link between two words (even if that link was wrong), then a link between all
word-classes containing those words was created. This is wrong in three different ways:

1. It excessively generalizes ("blurs") the grammar, allowing two word-classes to con-
nect, just because some random error in the MST stage accidentally connected two
words.

2. Its wrong because it also blurs different word-senses: if a word belongs to two or
more word-classes, each will be connected to, thus allowing links between word-
senses that should have been disallowed.

3. Finally, it is the direct and immediate cause of the combinatoric explosions that make
parsing so terribly slow.

Here in Part III, solutions to the problems above will be explored.

3.1 Info-based distances

These dictionaries are generated by using MI scores instead of cosines for determining distances
between words. They use the same projective clustering as the earlier datasets. These use a
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“sigmoid” taper; its not sigmoid in this case, but linear, running between 0% at the MI cutoff
and 100% at the lesser of the two self-MI’s of the items being merged. All of these use the
unknown-word mechanism.

The initial form of these dicts, where a connector is created for each distinct word-class that
a word belongs to cannot be measured. The result is that there is a combinatoric explosion
of expressions for each word, leading to an even worse combinatoric overflow during parsing.
Here’s a snapshot example from the micro-disinfo dictionary:

Token " t h e " matches :
t h e . 5 4 2879150524 d i s j u n c t s
t h e . 2 4 3397807 d i s j u n c t s

Token " o l d " matches :
o l d . 7 1 3568091 d i s j u n c t s

Token " was " matches :
was . 8 9 4809781 d i s j u n c t s
was . 1 9 20761 d i s j u n c t s

Token " on " matches :
on . 6 8 3259929866 d i s j u n c t s
on . 2 4 3397807 d i s j u n c t s
on . 1 7 22768 d i s j u n c t s

Token " h i s " matches :
h i s . 2 4 3397807 d i s j u n c t s

Token " s h o u l d e r " matches :
s h o u l d e r . 4 4 1274692269 d i s j u n c t s
s h o u l d e r . 3 9 204008 d i s j u n c t s
s h o u l d e r . 2 8 269503230 d i s j u n c t s

Token " . " matches :
. . 8 1 509547141 d i s j u n c t s
. . 3 4 3730768318 d i s j u n c t s

Notice how “the” explodes into almost 3 billion disjuncts, “on” into more than 3 billion, and even
a common noun like “shoulder” ends up with over a billion disjuncts. Clearly, this is intolerable.

Therefore ....

micro-disinfo (disinfo 2.0)
Dataset Sents Diff P R F1

CDS 1832
basic 579
fixes 4236
gold 229
silver 2513
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The End
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