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Abstract

The de Rham curves are a set of fairly generic fractal curves exhibiting dyadic
symmetry. Described by Georges de Rham in 1957[3], this set includes a number
of the famous classical fractals, including the Koch snowflake, the Peano space-
filling curve, the Cesàro-Faber curves, the Takagi-Landsberg[4] or blancmange
curve, and the Lévy C-curve. This paper gives a brief review of the construction
of these curves, demonstrates that the complete collection of linear affine deRham
curves is a five-dimensional space, and then presents a collection of four dozen
images exploring this space.

These curves are interesting because they exhibit dyadic symmetry, with the
dyadic symmetry monoid being an interesting subset of the group GL(2,Z). This
is a companion article to several others[5][6] exploring the nature of this monoid
in greater detail.

1 Introduction
In a classic 1957 paper[3], Georges de Rham constructs a class of curves, and proves
that these curves are everywhere continuous but are nowhere differentiable (more pre-
cisely, are not differentiable at the rationals). In addition, he shows how the curves may
be parameterized by a real number in the unit interval. The construction is simple. This
section illustrates some of these curves.

Consider a pair of contracting maps of the plane d0 : R2 → R2 and d1 : R2 → R2.
By the Banach fixed point theorem, such contracting maps should have fixed points p0
and p1. Assume that each fixed point lies in the basin of attraction of the other map,
and furthermore, that the one map applied to the fixed point of the other yields the same
point, that is,

d1(p0) = d0(p1) (1)

These maps can then be used to construct a certain continuous curve between p0and
p1. This is done by repeatedly composing together the maps d0 and d1 according to the
paths of an infinite binary tree, or, equivalently, according to the elements of a Cantor
set. This may be done in a very concrete fashion, by referring to the expansion in
binary digits of a real number x:

x =
∞

∑
k=1

bk

2k

1



where each of the binary digits bk is 0 or 1. The de Rham curve is then a map charac-
terized by the continuous parameter x:

dx = db1 ◦ db2 ◦ . . . ◦ dbk ◦ . . .

The above map will take points in the common basin of attraction of the two maps,
down to a single point. De Rham provides a simple proof that the resulting set of
points form a continuous curve as a function of x, and that furthermore, this function is
not differentiable in any conventional sense.

1.1 Examples
De Rham provides several examples. Let z = u+ iv and a ∈ C be a constant such that
|a|< 1 and |a−1|< 1. Then consider the maps

d0(z) = az

and
d1(z) = a+(1−a)z

These two maps clearly have fixed points at z = 0 and z = 1, respectively. The generated
curve is is the non-differentiable curve of Cesàro and Faber, now known more generally
as the Lévy C-curve, especially when a = 0.5+ i0.5. See figures 1 and ??.

Written as affine transformations, the two transforms can be expressed as

d0(u,v) =




1
u′
v′


 =




1 0 0
0 α −β
0 β α







1
u
v




and

d1(u,v) =




1
u′
v′


 =




1 0 0
α 1−α β
β −β 1−α







1
u
v




where z = u+ iv and a = α+ iβ.
The Takagi curve analyzed in the companion paper[6] can be generated in the same

way, using

d0 = L3 = g3 =




1 0 0
0 1

2 0
0 1 w


 and d1 = R3 = r3g3r3 =




1 0 0
1
2

1‘
2 0

1 −1 w




This curve is illustrated in figure 2.
The Koch and Peano curves are similarly obtained, by introducing a mirror reflec-

tion through the complex conjugate:

d0(z) = az

and
d1(z) = a+(1−a)z
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Figure 1: Cesàro Curve

The Cesàro curve, graphed for the value of a = (1+ i)/2. Note that this figure is more
commonly known as the Lévy C-curve.

The Cesàro curve, graphed for the value of a = 0.3+ i0.3. The real parameter shifts the
symmetry point: thus the biggest loop is located at 0.3 in this picture, instead of being
located at 0.5 as in the Lévy curve. The imaginary parameter provides a “strength” of
the non-differentiability, playing a role similar to the w parameter in the Blancmange
curve.
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Figure 2: Takagi Curve

The Takagi or blancmange curve, corresponding to a value of w = 0.6.
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Expressed in terms of affine left and right matrices, these are:

d0 =




1 0 0
0 α β
0 β −α


 and d1 =




1 0 0
α 1−α −β
β −β α−1




The classic Koch snowflake is regained for a = α + iβ = 1/2 + i
√

3/6 and the Peano
curve for a = (1 + i)/2. Values intermediate between these two generate intermediate
curves, as shown in figure 3 and ??.

Yet another example of a curve generated by means of the de Rham construction is
the Minkowski question mark function[5], which is given by the Möbius functions

d0(z) = z/(z+1)

and
d1(z) = 1/(z+1)

Expressed as the usual 2x2 matrix representations for Möbius transforms, these cor-
respond to the generators L and R of the Stern-Brocot tree[5, 2]. More precisely, the
generated function is actually half the inverse: dx =?−1(2x).

From the construction properties, it should now be clear that this generalized de
Rham curve construction has the same set of modular-group self-similarities; this es-
sentially follows from the self-similarity properties of the Cantor polynomials. That is,
given a contracting group element γ = ga1rga2 rga3r...rgaN ∈ GL(2,Z), one defines its
action in the canonical way, on the parameter space, as an action on dyadic intervals:
thus

gdx = dx/2

and
sd0 = d1 d0 = s−1d1

Note that the above is not just a statement about some particular value of x, but is
rather a statement that holds true for the entire range of parameters x ∈ [0,1]; it is a
statement of the self-similarity properties of the curve. In the case of the Koch and
Lévy curves, both g and s, and thus any contracting elements γ are expressible as linear
affine transformations on the two-dimensional plane. This is essentially an expression
of a known result from the theory of iterated function systems (IFS)[1]: these figures
are obtainable by iterating on a pair of specific affine transforms.

Homework: Write down an explicit expression for a general γ for the Koch and Lévy
curves.

The lesson to be learned here bears stating clearly: every point on the above-mentioned
curves can be uniquely labelled by a real number. The labelling is not abstract, but
concrete. The fractal self-similarity of the curves are in unique correspondence to
the contracting monoid of GL(2,Z). To every element of the contracting monoid,
a unique non-degenerate mapping of the plane can be given that exactly maps the
curve into a self-similar subset of itself. The mapping is continuous, and can be
expressed in concrete form.
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Figure 3: Koch Curve

The Koch snowflake curve, constructed for a = 0.6 + i0.37. The classic, hexagonal-
symmetry curve is regained by setting a = 0.5+ i

√
3/6, which centers the big point at

1/2, and opens the base of the point to run between 1/3 and 2/3’rds.

The Koch curve, for a = 0.6+ i0.45. The classic Peano space-filling curve is regained
for a = (1+ i)/2.
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1.2 The Total Number of Linear, Planar Dyadic Fractal Curves
The above exposition, in terms of the action of left and right affine transformations,
indicates that it is possible to count the total number of uniquely distinct dyadic planar
fractal curves, and to classify them into families. The general linear, dyadic planar
fractal curve is given by iterating on

d0 =




1 0 0
a b c
d e f


 and d1 =




1 0 0
h j k
l m n




where a,b, . . . ,n are taken as real numbers. From this general set, one wants to exclude
the cases which are rotated, translated, scaled or squashed versions of one another. The
general set appears to have twelve free parameters, from which should be excluded
1 (for rotations) + 2 (for translations) + 2 (for scaling) + 1(for shearing) = 6 non-
interesting parameter dimensions. Requiring that the curve be continuous, by using de
Rham’s continuity condition 1, eliminates two more degrees of freedom. This leaves
behind a four-dimensional space of unique fractal curves.

Of this four-dimensional space, one dimension has been explored with the Takagi
curves. A second dimension is explored with the Cesàro curves, and a third with the
Koch/Peano curves.

The general form may be narrowed as follows. Let d0 have the fixed point p0
located at the origin (u,v) = (0,0). This implies that a = d = 0. Next let d1 have the
fixed point p1 at (u,v) = (1,0). This implies that j = 1−h and m =−l. Finally, impose
the de Rham condition for the continuity of the curve, namely that d0(p1) = d1(p0).
This implies that h = b and m = e. Changing symbols, the general form with the
endpoints fixed may be written as

d0 =




1 0 0
0 α δ
0 β ε


 and d1 =




1 0 0
α 1−α ζ
β −β η




The half-way point of this curve is located at 1/2 = 0.100 . . . = 0.011 . . . = d1d0d0 . . . =
d0d1d1 . . . which can be seen to be (u,v) = (α,β). Using this last result to fix the
location of the half-way point, what remains is a four-parameter family of linear planar
fractal curves. Counting shearing of the space, then one has a five-parameter family.

2 Gallery
The following is a collection of images exploring this space of linear affine curves.
Each picture is labelled with four numbers. These numbers are δ, ε, ζ and η. In all
cases, α and β have been fixed to α = 0.5 and β = 1.0. The vertical and horizontal axes
are properly label, thus all curves start at (u,v) = (0.0) and end at (u,v) = (1,0).
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3 Conclusions
Goolly! An open question: Can these images all be taken to be the projections of some
general curve in some higher-dimensional space, projected down to two dimensions,
along some axis?
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