TR45.AHAG

Common Cryptographic
Algorithms, Revision D.1

Publication Version

September 13, 2000

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

NOTICE

EIA/TIA Engineering Standards and Publications are designed to serve
the public interest through eliminating misunderstandings between
manufacturers and purchasers, facilitating inter-changeability and
improvement of products, and assisting the purchaser in selecting and
obtaining with minimum delay the proper product for their particular
need. Existence of such Standards and Publications shall not in any
respect preclude any member or non-member of EIA or TIA from
manufacturing or selling products not conforming to such Standards
and Publications, nor shall the existence of such Standards and
Publications preclude their voluntary use by those other than EIA or
TIA members, whether the standard is to be used either domestically or
internationally.

Standards and Publications are adopted by EIA/TTA without regard to
whether or not their adoption may involve patents or articles, materials,
or processes. By such action, EIA/TIA does not assume any liability to
any patent owner, nor does it assume any obligation whatever to parties
adopting the Recommended Standard or Publication.

TIA TR45 Ad Hoc Authentication Group Documents

TIA TR45 Ad Hoc Authentication Group Documents contain
information deemed to be of technical value to the industry, and are
published at the request of the TR45 Ad Hoc Authentication Group
without necessarily following the rigorous public review and resolution
of comments which is a procedural part of the development of an
EIA/TIA Standard.

TIA TR45 Ad Hoc Authentication Group Documents bear on or are
subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (EAR), Title 15 CFR
parts 730 through 774 inclusive. An export license may be required for
the transmission of such material in any form outside of the United
States of America.

Contact

TELECOMMUNICATIONS INDUSTRY ASSOCIATION
Engineering Department

2500 Wilson Boulevard, Suite 300

Arlington, VA 22201

Copyright 2000

TELECOMMUNICATIONS INDUSTRY ASSOCIATION
All rights reserved

Printed in the United States

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
ii

Common Cryptographic Algorithms Revision D.1 09/13/2000

Document History

Revision Date Remarks

0 02-05-93 Frozen for PN-3118 Ballot

0.1 04-21-93 Adopted by TR45 AHAG

A 12-14-94 Major revision, incorporating ORYX data encryption algorithms and
ANSI C algorithm descriptions

Al 04-25-95 Corrections to ORYX algorithm and test vectors; conversion to Word 6.0

B 04-26-95 Add procedures for wireless residential extension authentication

B.1 04-15-97 Version for PN-3795 ballot.

C 10-27-98 Add ECMEA and related key management procedures

D 03-14-00 Add SCEMA and related procedures

D.1 09-13-00 Corrections to SCEMA key scheduling

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

w

IS

10
1"
12

13

14
15
16
17
18
19
20

21
22
23

24
25
26
27
28

29
30
31
32

33

35
36
37
38
39

09/13/2000 Common Cryptographic Algorithms Revision D.1

Table of Contents

INTRODUCTION 1]
[1.1. Notations 2|
[L.2. Definitions 2|

2. PROCEDURES 6|
R.1. CAVE 6|
R.2. Authentication Key (A-Key) Procedures 17

P.2.1. A-Key Checksum Calculation 17

D.2.2. A-Key Verification 21
R.3. SSD Generation and Update 24

D.3.1. SSD Generation Procedure 24

D.3.2. SSD Update Procedure 27
R.4. Authentication Signature Calculation Procedure 28|

5. Secret Key and Secret Parameter Generation 33
.5.1. CMEA Encryption Key and VPM Generation Procedure 34
D.5.1.1. CMEA key Generation 35
D.5.1.2. Voice Privacy Mask Generation 36

D.5.2. ECMEA Secrets Generation for Financial Messages Procedure 40

D.5.3. Non-Financial Seed Key Generation Procedure 45

D.5.4. ECMEA Secrets Generation for Non-Financial Messages Procedure 48
R.6. Message Encryption/Decryption Procedures 52

.6.1. CMEA Encryption/Decryption Procedure 52
.6.2. ECMEA Encryption/Decryption Procedure 55
R.7. Wireless Residential Extension Procedures 65

D.7.1. WIKEY Generation 66

2._7.2. WIKEY Update Procedure 6_9

D.7.3. Wireline Interface Authentication Signature Calculation Procedure 72

D.7.4. Wireless Residential Extension Authentication Signature Calculation Procedure 76
R.8. Basic Wireless Data Encryption 79

g.& 1. Data Encryption Key Generation Procedure 82

8.2, L-Table Generation Procedure 86

.8.3. Data Encryption Mask Generation Procedure 88
R.9. Enhanced Voice and Data Privacy 90

R.9.1. SCEMA Key Generation Code 90

D.9.1.1. DTC Key Generation 91
D.9.1.2. DCCH Key Generation 93
P.9.1.3. SCEMA Secret Generation 95
P.9.2. SCEMA Header File 100
D.9.3. SCEMA Encryption/Decryption Procedure (Level 1) 103

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
iv

® N O O b~ W N =

10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26
27
28
29
30
31
32
33

Common Cryptographic Algorithms Revision D.1

09/13/2000

R.9.4. Block and KSG Encryption Primitives (Level 2) 111
D.9.4.1. SCEMA KSG 111
D.9.4.2. Long Block Encryptor 113
D.9.4.3. Short Block Encryptor 116

p.9.5. Voice, Message, and Data Encryption Procedures (Level 3) 122
D.9.5.1. Enhanced Voice Privacy 122
D.9.5.2. Enhanced Message Encryption 128
P.9.5.3. Enhanced Wireless Data Encryption 133

B. TEST VECTORS 136|
B.1. CAVE Test Vectors 136

B3.1.1. Vector 1 136

3.1.2. Vector 2 137

B3.1.3. Vector 3 138

B3.1.4. Test Program 139

B.2. Wireless Residential Extension Test Vector 146

3.2.1. Input data 146

B.2.2. Test Program 147

3.2.3. Test Program Output 148

B.3. Basic Data Encryption Test Vector 149

3.3.1. Input data 149

3.3.2. Test Program 149

3.3.3. Test Program Output 151

B.4. Enhanced Voice and Data Privacy Test Vectors 152

3.4.1. Input Data 152

B.4.2. Test Program 152
3.4.2.1. Main program file 152
3.4.2.2. Vector set 3 155
3.4.2.3. Vector set 4 157
B3.4.2.4. Vector set 5 158
B3.4.2.5. Vector set 6 162
B.4.2.6. Vector set 7 166
B.4.2.7. Vector set 8 170

B.4.3. Test Program Input and Output 170

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

\'

© O N o a H» W N

a g oo g o ga bH B B B B BB DB B W W W W W W W WWWNNDNDNDNDNDNDNDRNDNDNDN=2 2 A A A a
a H W N =2 O © 0 N O O b WN =2 O © ©® N O O & WON =2 O © © N OO G & W N =2 O © ® N O a & w N = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

List of Exhibits
|EXHIBIT 2l CAVE ELEMEN T S oottt e e e e e e e e e e e eaeee e e aeeeaaaasseanasessnesesnasessnaseessnaaeeanaees 7
EXHIBIT 2-2 CAVE ALGORITHM EXTERNAL HEADER...... oot e eeee e e eeeee e e eaeeeeeaaeeeaees 8
EXHIBIT 2-3 CAVE ALGORITHM INTERNAL HEADER ..ottt et aeeeeaaaeaaaes 10
EXHIBIT 2-4 CAVE ALGORITHM. ...ttt e e eee e e eaeeeeeateaeseaaaesseseaseeasassesnaesesanassessaassaanaees 11
EXHIBIT 2-5 CAVE TABLE ...t e et e e ee e e e ee e e et eaeseaaaeseeaaaeeeassesaanaesesanassessnaesannaaaes 16
EXHIBIT 2-6 CAVE INITIAL LOADING FOR A-KEY CHECKSUM.....oouieiiiiieee e eeeeeeseaeees 18
EXHIBIT 2-7 A-KEY CHECKSUM ...ttt eeee e e eeae s e aes s eataeseaaaesaaaeesseanaasssseeseanaaees 19
EXHIBIT 2-8 A-KEY VERIFLICATION ...ttt ee e e eeeee e eaaeeeaaaasseaaaesasasseasessesnassssnassennaaes 23
EXHIBIT 2-9 GENERATION OF SSD A NEW AND SSD B NEW ..ot a e 25
EXHIBIT 2-10 SSD GENERATION ..ottt et ee et e e et ee e et aas e aaeaeeeaaeeesaaneesesaaassasaesennaaees 26
EXHIBIT 2-11 SSD UPDATE ...t ee e et ee et e e e e aeasseaeaeseaaaesesnaessssnsssssnaesesnaases 27
EXHIBIT 2-12 CAVE INITIAL LOADING FOR AUTHENTICATION SIGNATURES ...coovoevieeveennn, 29
EXHIBIT 2-13 CALCULATION OF AUTH SIGNATURE ..o eeee e eeeeee e aaeesanaaees 30
EXHIBIT 2-14 CODE FOR CALCULATION OF AUTH SIGNATUREooieieeeeeee e, 31
EXHIBIT 2-15 CMEA KEY AND VPM GENERATION oottt eeee e eeeeaaeeseeaeessssnaeseannaees 36
EXHIBIT 2-16 GENERATION OF CMEA KEY AND VPM ...t eee e eeeee e e aaeeeseanaees 38
EXHIBIT 2-17 DETAILED GENERATION OF CMEA KEY AND VPM ..o eeeeeeeaeeas 39
EXHIBIT 2-18 GENERATION OF ECMEA SECRETS . ..ot eee e eeeeee e eeeeeeaeeseeaaessasaesannnees 42
EXHIBIT 2-19 ECMEA SECRET GENERATION ..ottt eeee e eeee e eaeeeeeateeseaneesesanaessssassannnaaes 43
EXHIBIT 2-20 GENERATION OF NON-FINANCIAL SEED KEY .oeieeiieeeeeee et eeeeeaaaaaees 46
EXHIBIT 2-21 NON-FINANCIAL SEED KEY GENERATION ..ottt eeeeeeeeeeeeeaaeeesennees 47
EXHIBIT 2-22 GENERATION OF NON-FINANCIAL SECRETS ..ot eeeeeeeeeeeeeaeeesaaeeaes 50
EXHIBIT 2-23 NON-FINANCIAL SECRET GENERATIONttt ee e eeeeeeeeeeseaaeeesanaeeees 50
EXTHIBIT 2524 TBO X oottt e e e e e e e ee s e e e e e e e aeeeaaaesesaaseeaasssasaassessnassessnaseasnaseesnassesnaesennanaes 53
EXHIBIT 2-25 CMEA ALGORITHMot e e eeeee e e eeeeeeaaeeeaeaeesesaeaesasesseasassesnasssssnassennaees 54
EXHIBIT 2-26 ENHANCED TBOX ..einiiiieeteeeeee et e e ee e e etteee e aaeeeeeaaaessaaaassesanassessnsssssnassesanasssssasssanaaees 56
EXHIBIT 2-27 ECMEA STRUCGTIURE ...ttt et e e e eeee e aeeeseaaaeeeaaassasaaeseesassessaesannaees 57
EXHIBIT 2-28 ECMEA TRANSFORMATION AND ITS INVERSE ...t eeeee e 59
EXHIBIT 2-29 ECMEA ALGORITHM HEADER ...t eee e eeeeeeaeeeeeaeseeaaeeseesnaesennaeees 62
EXHIBIT 2-30 ECMEA ENCRYPTION/DECRYPTION ALGORITHM FOR THE MOBILE STATIONG63
EXHIBIT 2-31 WRE HEADER ..ot e e e te e e e ee e e e aee e aeaeeseaaaaeeaaaeeeanasesanaeseasaesennaaees 65
EXHIBIT 2-32 CAVE INITIAL LOADING FOR WIKEY GENERATIONoovuieiiiieee e, 67_
EXHIBIT 2-33 GENERATION OF WIKEY ..ottt eeee et e e e eaee e aeaaeseeaeaeseaasssasnassesnnasssssasesannnaes 67
EXHIBIT 2-34 CODE FOR WIKEY GENERATION ..ottt e e eeeee e eteeeeaaeeseeenaassaseaeseanaees 68
EXHIBIT 2-35 CAVE INITIAL LOADING FOR WIKEY UPDATE ..., 69
EXHIBIT 2-36 GENERATION OF WIKEY NEW Lottt eeee s eeeaeeeeeesaaeassanaases 70
EXHIBIT 2-37 CODE FOR WIKEY NEW GENERATIONttt e eeee e eeeeeeeeeseeaaeseanaeeees 71
EXHIBIT 2-38 CAVE INITIAL LOADING FOR WIRELINE INTERFACE AUTHENTICATION
BIGNATURES ..o 73]
EXHIBIT 2-39 CALCULATION OF AUTH SIGNATUREccoooiiviiiiiiiiiiiiiiiiieeeeeeeee e 74
EXHIBIT 2-40 CODE FOR CALCULATION OF AUTH SIGNATUREoiiiiiee e 75
EXHIBIT 2-41 CAVE INITIAL LOADING FOR RESIDENTIAL WIRELESS EXTENSION
|AUTHENTICATION SIGNATURE ...t e e e e e e e e s e et eaeeeaaaesaaaaeseesnasseasaeseanaaees 76
EXHIBIT 2-42 CALCULATION OF AUTH SIGNATURE ..o ee e eeee e e eeeeeeaaaesaanees 77
EXHIBIT 2-43 CODE FOR CALCULATION OF AUTH SIGNATUREoiiiieeeeeeeee e 78
EXHIBIT 2-44 GALOIS SHIFT REGISTERS ..ottt eeee e e aeeeeeaeeeeateaeseasassesassseseasssannaaes 81
EXHIBIT 2-45 HEADER FOR BASIC DATA ENCRYPTION. ..ot eeeeeeeeeeeeaeesaanaeeees 83
EXHIBIT 2-46 DATAKEY GENERATION ..ottt eeeee et e e eeee e e aeeeeseaaeaesaaeaaseasasseenassessasseannaees 83
EXHIBIT 2-47 LTABLE GENERATION ..ottt eee e eeee e eaeee e aeaeeseaaaassasaeseanasssanaassssassannnaees 87
EXHIBIT 2-48 DATA ENCRYPTION MASK GENERATION ...ooiiiiiiiie oo eeeeeeeeeeeeeeeeeeeaaeeesanneees 89
EXHIBIT 2-49 SCEMA DTC KEY GENERATION ..ottt ettt ee e eeee e e eaeeeeeateeseanesesenaessssnassennaees 92
EXHIBIT 2-50 SCEMA DCCH KEY GENERATION iieeet ettt ee e eeeeee e eteeeseaneesesaneessasnaesannaees 94
EXHIBIT 2-51 GENERATION OF SCEMA SECRETS ..ottt eetee e e eaeeeeaaeeesaanaaees 97
EXHIBIT 2-52 SCEMA SECRET GENERATION ...oiieieiioe et ee e eeee e eeeeeeateeseaneseesnaessssnassennaees 98

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
Vi

© ® N o a »~A WO N -

Common Cryptographic Algorithms Revision D.1 09/13/2000

EXHIBIT 2-53 SCEMA HEADER FILE ..ottt 100
EXHIBIT 2-54 SCEMA WITH SUBTENDING FUNCTIONS STBOX AND SCEMA TRANSFORM 105
EXHIBIT 2-55 SCEMA KSG FOR VOICE AND MESSAGE CONTENTccccoviviiniiiie 112
EXHIBIT 2-56 LONG BLOCK ENCRYPTOR FOR VOICE AND MESSAGE CONTENT................... 114
EXHIBIT 2-57 SHORT BLOCK ENCRYPTOR FOR VOICE AND MESSAGE CONTENT................. 117
EXHIBIT 2-58 ENHANCED VOICE PRIVACY ..ot 123
EXHIBIT 2-59 ENHANCED MESSAGE ENCRYPTION.......cccvoiiiiiiiiiiiieeceeeee 129
EXHIBIT 2-60 ENHANCED DATA MASK GENERATIONiociiiiiiiiiiiieiieiiciienecieeceeeeiecieeieaes 134

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
vii

o a A W N

10
1"

12
13

14
15
16

17

18
19
20
21
22
23
24
25
26

27
28
29
30

31
32

33
34

35
36

37
38
39

1.

Introduction

Common Cryptographic Algorithms Revision D.1 09/13/2000

This document describes detailed cryptographic procedures for wireless
system applications. These procedures are used to perform the security
services of mobile station authentication, subscriber message
encryption, and encryption key and subscriber voice privacy key
generation within wireless equipment.

This document is organized as follows:

§E|describes the Cellular Authentication, Voice Privacy and Encryption
(CAVE) algorithm wused for authentication of mobile subscriber
equipment and for generation of cryptovariables to be used in other
procedures.

§ describes the procedure to verify the manual entry of the
subscriber authentication key (A-key).

§ describes the generation of intermediate subscriber
cryptovariables, Shared Secret Data (SSD), from the unique and private
subscriber A-key.

§ describes the authentication signature calculation procedure.

§ describes the procedures used for generating cryptographic keys.
These keys include the Voice Privacy Mask (VPM), the Cellular
Message Encryption Algorithm (CMEA) key, and Enhanced Cellular
Message Encryption Algorithm (ECMEA) secrets and keys. The VPM
is used to provide forward link and reverse link voice confidentiality
over the air interface. The CMEA key is used with the CMEA
algorithm for protection of digital data exchanged between the mobile
station and the base station. The ECMEA secrets and keys are used with
the ECMEA algorithm for enhanced protection of signaling messages.

§ describes the Cellular Message Encryption Algorithm (CMEA)
and the Enhanced Cellular Message Encryption Algorithm (ECMEA),
used for enciphering and deciphering subscriber data exchanged
between the mobile station and the base station.

§ describes the procedures for key and authentication signature
generation for wireless residential extension applications.

§ describes the ORYX algorithm and procedures for key and mask
generation for encryption and decryption in wireless data services.

§ describes the SCEMA algorithm, which may be used for voice and
data privacy.

§E| provides test data (vectors) that may be employed to verify the
correct operation of the cryptographic algorithms described in this
document.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
1

® N O O b~ W N =

10

11
12

13
14
15
16
17
18

19
20
21
22
23
24

25
26
27
28
29
30

31

32
33
34
35

37

38
39

09/13/2000 Common Cryptographic Algorithms Revision D.1

1.1. Notations

Manufacturers are cautioned that no mechanisms should be provided
for the display at the ACRE, PB or mobile station (or any other
equipment that may be interfaced with it) of valid A-key, SSD A,
SSD B, MANUFACT KEY, WIKEY, WRE KEY or other
cryptovariables associated with the cryptographic functions described in
this document. The invocation of test mode in the ACRE, PB or mobile
station must not alter the operational values of A-key, SSD A, SSD B
MANUFACT KEY, WIKEY, WRE KEY or other cryptovariables.

The notation 0x indicates a hexadecimal (base 16) number.

Binary numbers are expressed as a string of zero(s) and/or one(s)
followed by a lower-case “b”.

Data arrays are indicated by square brackets, as Array[]. Array indices
start at zero (0). Where an array is loaded using a quantity that spans
several array elements, the most significant bits of the quantity are
loaded into the element having the lowest index. Similarly, where a
quantity is loaded from several array elements, the element having the
lowest index provides the most significant bits of the quantity.

For example, [Exhibit 2-1| shows the mixing registers R[00] through
R[15] and the linear feedback shift register (LFSR). In this exhibit, the

mixing registers are loaded from left (most significant bit) to right (least
significant bit). Similarly, the LFSR is loaded with the most significant
bits in its leftmost octet (LFSR A7-A0) and the least significant bits into
its rightmost octet (LFSR D7-D0).

This document uses ANSI C language programming syntax to specify
the behavior of the cryptographic algorithms (see ANSI/ISO 9899-
1990, “Programming Languages - C”). This specification is not meant
to constrain implementations. Any implementation that demonstrates
the same behavior at the external interface as the algorithm specified
herein, by definition, complies with this standard.

1.2. Definitions

AAV

ACRE

ACRE_PHONE_NUMBER

Authentication Algorithm Version, an 8-bit constant equal to
hexadecimal 0xC7, used in the CAVE algorithm. Use of different
values for this constant in some future version would allow other
“versions” or “flavors” of the basic CAVE algorithm.

Authorization and Call Routing Equipment. A network device which
authorizes the Personal Base and provides automatic call routing.

A 24-bit pattern comprised of the last 6 digits of the ACRE's directory
number.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
2

N oo g b~ W N =

10

1"
12

13

14
15
16
17

18
19

20
21

22

23

24
25
26
27

28
29
30
31

32

33
34

35
36
37

38

39
40

41

42

43

44

45

A-key

AND
Boolean
CAVE
CaveTable

CMEA
CMEAKEY

DataKey

Data_type

Directory Number
ECMEA
ECMEA_KEY

ECMEA _NF_KEY

ESN
Internal Stored Data

Iteration

k0,k1...k7
LFSR

LFSR_A
LFSR_B
LFSR_C
LFSR_D
LFSR-Cycle

Common Cryptographic Algorithms Revision D.1 09/13/2000

A 64-bit cryptographic key variable stored in the semi-permanent
memory of the mobile station and also known to the Authentication
Center (AC or HLR/AC) of the wireless system. It is entered when the
mobile station is first put into service with a particular subscriber, and
usually will remain unchanged unless the operator determines that its
value has been compromised. The A-key is used in the SSD generation
procedure.

Bitwise logical AND function.
Describes a quantity whose value is either TRUE or FALSE.
Cellular Authentication and Voice Encryption algorithm.

A lookup table consisting of 256 8-bit quantities. The table, partitioned
into table0 and tablel, is used in the CAVE algorithm.

Cellular Message Encryption Algorithm.

A 64-bit cryptographic key stored in eight 8-bit registers identified
separately as kO, kl, ... k7 or CMEAKEY|O0 through 7]. The data in
these registers results from the action of the CAVE algorithm and is
used to encrypt certain messages.

A 32-bit cryptographic key used for generation of masks for encryption
and decryption in wireless data services.

A one-bit value indicating whether the financial or non-financial data
encryption parameters are used.

The telephone network address.
Enhanced Cellular Message Encryption Algorithm.

A 64-bit cryptographic key stored in eight 8-bit registers identified
separately as ecmea key[0 through 7]. The data in these registers
results from the action of the CAVE algorithm and is used to encrypt
financial messages.

A 64-bit cryptographic key stored in eight 8-bit registers identified
separately as ecmea_nf key[O through 7]. The data in these registers
results from the action of the CAVE algorithm and is used to encrypt
non-financial messages.

The 32-bit electronic serial number of the mobile station.

Stored data that is defined locally within the cryptographic procedures
and is not accessible for examination or use outside those procedures.

Multi-round execution of the CAVE algorithm. All applications of
CAVE throughout this document use either four or eight rounds per
iteration.

Eight 8-bit registers whose contents constitute the CMEA key.

A 32-bit Linear Feedback Shift Register used in the CAVE algorithm,
which is composed of four 8-bit registers.

The A register, a synonym for bits 31-24 of the LFSR.
The B register, a synonym for bits 23-16 of the LFSR.
The C register, a synonym for bits 15-8 of the LFSR.
The D register, a synonym for bits 7-0 of the LFSR.
An LFSR-cycle consists of the following steps:

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
3

10

11
12
13

14
15
16

17
18
19

20
21
22
23

24
25

26

27

28

29

30

31

32
33

34
35
36

37
38

39
40
41
42

43
44

09/13/2000

LSB
MSB
OR
Offset1

Offset2

offset_key

offset_nf key

PB

PBID
RAND_ACRE
RAND_PB
RAND_WIKEY
RAND_WRE
Round

R00-R15

SEED NF_KEY

SSD

SSD_A

SSD_A_NEW

Common Cryptographic Algorithms Revision D.1

1. Compute the value of bit A7 using the formula A7 = B6 XOR
D2 XOR D1 XOR DO0. Save this value temporarily without
changing the prior value of the A7 bit in the A register.

2. Perform a linked 1-bit right shift on the 32-bit LFSR, and discard
the DO bit which has been shifted out.

3. Use the previously computed and stored value of bit A7 from the
first of these three statements.

Least Significant Bit.
Most Significant Bit.
Bitwise logical inclusive OR function.

An 8-bit quantity that points to one of the 256 4-bit values in table0.
Arithmetic operations on Offset] are performed modulo 256. Also
called offset 1.

An 8-bit quantity that points to one of the 256 4-bit values in tablel.
Arithmetic operations on Offset2 are performed modulo 256. Also
called offset 2.

A 32-bit cryptographic key stored in four 8-bit registers identified
separately as offset_key[0 through 3] whose contents are used to create
offsets that are passed to ECMEA.

A 32-bit cryptographic key stored in four 8-bit registers identified
separately as offset nf key[0 through 3] whose contents are used to
create offsets that are passed to ECMEA for use in encryption of non-
financial data.

Personal Base. A fixed device which provides cordless like service to a
mobile station.

Personal Base Identification Code.

A 32-bit random number which is generated by the PB.

A 32-bit random number which is generated by the ACRE.

A 56-bit random number which is generated by the ACRE.

A 19-bit random number which is generated by the PB.

A round is one individual execution of the CAVE mixing function.

Sixteen separate 8-bit mixing registers used in the CAVE algorithm.
Also called register[0 through 15].

Five 8-bit registers whose content constitutes the 40-bit binary quantity
generated after the CMEA key and used to initialize the CAVE
algorithm for generation of the ECMEA NF key and offset nf keys.

SSD is an abbreviation for Shared Secret Data. It consists of two
quantities, SSD_A and SSD_B.

A 64-bit binary quantity in the semi-permanent memory of the mobile
station and also known to the Authentication Center. It may be shared
with the serving MSC. It is used in the computation of the
authentication response.

The revised 64-bit quantity held separately from SSD_A, generated as a
result of the SSD generation process.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
4

A WN =

o o

10

11
12

13
14
15

16
17

18
19

20
21

22

SSD_B

SSD_B_NEW

Sync

table0

tablel

VPM

WIKEY

WIKEY_NEW

WRE_KEY

XOR

Common Cryptographic Algorithms Revision D.1 09/13/2000

A 64-bit binary quantity in the semi-permanent memory of the mobile
station and also known to the Authentication Center. It may be shared
with the serving MSC. It is used in the computation of the CMEA key,
VPM and DataKey.

The revised 64-bit quantity held separately from SSD B, generated as a
result of the SSD generation process.

A 16-bit value provided by the air interface used to generate offsets for
ECMEA.

The low-order four bits of the 256-octet lookup table used in the CAVE
algorithm. Computed as CaveTable [] AND O0xOF.

The high-order four bits of the 256-octet lookup table used in the
CAVE algorithm. Computed as CaveTable [] AND O0xFO.

Voice Privacy Mask. This name describes a 520-bit entity that may be
used for voice privacy functions as specified in wireless system
standards.

Wireline Interface key. A 64-bit pattern stored in the PB and the ACRE
(in semi-permanent memory).

A 64-bit pattern stored in the PB and the ACRE. It contains the value
of an updated WIKEY.

Wireless Residential Extension key. A 64-bit pattern stored in the PB
and the MS (in semi-permanent memory).

Bitwise logical exclusive OR function.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
5

1

© O N o g »~ W

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

30
31
32
33

09/13/2000

2.

Procedures

Common Cryptographic Algorithms Revision D.1

2.1.

CAVE

CAVE is a software-compatible non-linear mixing function shown in
Its primary components are a 32-bit linear-feedback shift
register (LFSR), sixteen 8-bit mixing registers, and a 256-entry lookup
table. The table is organized as two (256 x 4 bit) tables. The 256-octet
table is listed in |Exhibit 2-5] The low order four bits of the entries
comprise table0 and the high order four bits of the entries comprise
tablel.

The pictorial arrangement of shows that the linear-feedback
shift register (LFSR) consists of the 8-bit register stages A, B, C, and D.
The CAVE process repeatedly uses the LFSR and table to randomize
the contents of the 8-bit mixing register stages R00, R01, R02, R03,
R04, RO5, R0O6, RO7, RO8, R09, R10, R11, R12, R13, R14, and R15.
Two lookup table pointer offsets further randomize table access. The
registers are shifted one bit to the right. Finally, eight 16-entry
permutation recipes are embedded in the lookup tables to “shuffle”
registers ROO through R15 after each computational “round” through
the algorithm.

The algorithm operation consists of three steps: an initial loading, a
repeated randomization consisting of four or eight “rounds”, and
processing of the output. Initial loading consists of filling the LFSR,
register stages ROO through R15, and the pointer offsets with
information that is specific to the application. The randomization
process is common to all cases that will be described in the later
sections. Randomization is a detailed operation; it is described below
by means of [Exhibit 2-], [Exhibit 2-3, and [Exhibit 2-5} The output
processing utilizes the final (randomized) contents of R0O0O through R15
in a simple function whose result is returned to the calling process.

The CAVE Algorithm may be applied in a number of different cases.
In each, there are different initialization requirements, and different
output processing. All cases are detailed in §2.2 through §2.9 of this
document.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
6

Common Cryptographic Algorithms Revision D.1 09/13/2000
Exhibit 2-1 CAVE Elements
B5 ------ B1 Bo C7 ------ co D7 ------ D2 D1 Do

A7(input) = B6 XOR D2 XOR D1 XOR DO

Mixing Registers:

| ROO | Ro1 | Ro2 | RO3 | RO4 | ROS || RO6 | RO7 | RO8 | RO9 | R0 | R11 [R12 | RI3 | R14 | RIS |

5

0x00 XXXX
0x01 XXXX
0x02 XXXX
0xFD XXXX
O0xFE XXXX
OxFF XXXX

256 X 4
Tablel

0x00
0x01

0xFF

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

256 X 4
Table0

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
7

© o N O O b~ WN

g g a0 g a0 a0 a a & H B B B BB BB B W W W WWWWWWwWNDNDNDNDNDNDNDNDNDNDDN=S 2 aaaaaa A
N O OB WN -2 O © 0N OO B WN -2 O © 00N O ar WN =2 O O 00 N OGO & WN =2 O O© © N O G & wWN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-2 CAVE Algorithm External Header

#ifndef CAVE H
#define CAVE H

/* external header for CAVE and related procedures */
/* function declarations */
void CAVE (const int number of rounds,

int *offset 1,

int *offset 2);

void A Key Checksum(const char A KEY DIGITS[20],
char A_KEY CHECKSUM[6]) ;

int A Key Verify(const char A KEY DIGITS[26]);
void SSD_Generation(const unsigned char RANDSSD[7]) ;

void SSD Update (void) ;

unsigned long Auth Signature (const unsigned char RAND CHALLENGE [4],
const unsigned char AUTH DATA[3],

const unsigned char *SSD AUTH,
const int SAVE REGISTERS) ;

void Key VPM Generation(void) ;

void CMEA (unsigned char *msg buf, const int octet count);
/* global variable definitions */

#ifdef CAVE SOURCE_FILE

#define CAVE GLOBAL

#else

#define CAVE GLOBAL extern

#endif

/* externally available results */

CAVE_ GLOBAL
unsigned char cmeakey [8] ;

CAVE_ GLOBAL
unsigned char VPM[65] ;

CAVE_ GLOBAL

unsigned char SAVED LFSR[4];
CAVE_ GLOBAL
int SAVED OFFSET 1;
CAVE_ GLOBAL
int SAVED OFFSET 2;
CAVE_ GLOBAL
unsigned char SAVED_ RAND [4] ;
CAVE_ GLOBAL
unsigned char SAVED DATA[3];

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
8

© 0 N O O b~ WN =

A o o a4 A o
N o o b W N =~ O

Common Cryptographic Algorithms Revision D.1 09/13/2000

/* global constant definitions */
#ifndef CAVE SOURCE_FILE

CAVE_ GLOBAL
unsigned char CaveTable[256] ;

CAVE_ GLOBAL
unsigned char ibox [256] ;

#endif // ifndef CAVE SOURCE_FILE
#endif // ifndef CAVE H

/* end of CAVE external header */
/**/

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
9

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-3 CAVE Algorithm Internal Header

/* internal header for CAVE, used by all cryptographic source files */

#include "cave.h" /* see [Exhibit 2-2 f/

/* authentication algorithm version (fixed) */

© 0 N O O b~ WN

BABA W W WWWWWWWWNNDNDNDNDNDNDNDNDNDN=2 2 2 A A A A A
- O © ©® N O O A W N =2 O © ©® N O g & WN = O © 0 ~NO O b WN = O

#define AAV 0xC7

#define LOMASK
#define HIMASK

#define TRUE
#define FALSE

/* NAM stored

extern
unsigned char

extern
unsigned char

extern
unsigned char

extern
unsigned char

0xO0OF
0xFO

data */

ESN[4] ;

A key[8];

SSD_A NEW[8],

SSD_B NEW[8],

/* saved outputs */

CAVE_ GLOBAL
unsigned char

#define LFSR A LFSRI[O
#define LFSR B LFSRI[1
#define LFSR C LFSR[2
#define LFSR D LFSRI[3

CAVE_ GLOBAL
unsigned char

LFSR[4];

]
]
]
]

Register[16];

SSD_A[8];

SSD_BI[8];

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
10

© o N O O b~ WN

A A B B B WWWW W W WWWWNDNDNDNDNDNDNDNDNIDN-= 22 A a2 A A
A W N =2 O © ® N O G B WN =2 O © 0N O & WN - O © 0N O O b WN = O

Common Cryptographic Algorithms Revision D.1

Exhibit 2-4 CAVE Algorithm

09/13/2000

#define CAVE SOURCE_FILE

#include "cavei.h" /* see [Exhibit 2-3| */

/**/

/* table0 is the 4 1lsbs of the array,
tablel is the 4 msbs of the array */

unsigned char

{ oxd9, 0x23, 0x5f, Oxeé6,
0x7b, 0xf2, 0x0c, 0x34,
0x0a, O0x46, 0x77, 0x8d,
0xfl, 0x34, Oxec, 0xa5,
0x59, 0x47, 0xe3, 0xd2,
0x15, 0x8b, 0x7d, 0x38,
0x49, 0x56, 0x23, 0x15,
0xf2, 0x70, O0x3c, 0x88,
Oxe2, 0x38, Oxba, 0x44,
Oxde, Oxab, 0xc7, 0x65,
0x86, Oxbd, O0x0a, O0xf1l,
Oxcb, 0x45, 0x5f, 0xeS8,
0xb8, 0x77, 0x80, O0xdl,
0xe9, Oxcf, 0xf3, 0x54,
0xbl, 0x30, Oxa4, 0x96,
0x05, Ox1f, 0x62, 0x7c,
O0xbb, 0x86, 0x0d, O0x7a,
0x51, 0x30, Oxe5, 0xf2,
0x91, 0x76, Oxfo, 0x17,
0xa2, Oxdb, Oxef, 0x65,
Oxe7, Oxfa, 0xd8, 0x81,
0x25, 0x7c, 0x5d, O0xc9,
0x5a, 0x6f, 0x9b, 0xd9,
0x37, O0xa2, 0x88, 0x2d,
Ox4e, 0x96, 0xa8, O0xba,
0x3f, 0xf2, Oxec, 0x04,
0x04, 0x79, 0xe3, 0xc7,
0x25, 0x9d, Oxdc, O0Ox5f,
0x91, 0x34, O0xfe, 0x5c,
0x22, Oxaa, Oxcb, Oxee,
0xf5, 0x36, Oxae, 0x01,
0x8b, Oxbd, 0x58, 0x12,

CaveTable [256] =

Oxca,
0x11,
0x10,
0xc9,
oxff,
0x21,
0x97,
Oxba,
0x9f,
oxf1l,
0x3c,
0x10,
0x12,
0x3a,
0xfs,
0xc3,
0x97,
ox2f,
0x43,
0xbe,
ox6f,
0x9%e,
oxfe,
0x00,
0xb5,
0x60,
0x1b,
0x3e,
0x67,
0xbf,
ox2f,
0xeo0,

0x68,
0xabs,
0x9f,
0xb3,
Oxae,
0xbc,
0xe4,
0xdil,
0x83,
0x76,
0xa’7,
0x74,
0x26,
0x0b,
0x57,
0x2b,
0x13,
0xds,
0x38,
Oxca,
0x00,
0xbé6,
0x71,
0xbé6,
0xd7,
0x71,
0x66,
0xbo0,
0x89,
0x18,
0x94,
0x77,

0x97,
0x8d,
0xbe,
0xds,
0x64,
0x96,
0xcb,
0x0d,
0x5d,
0x09,
0x29,
0x62,
Oxac,
0x95,
0x49,
Oxda,
0oxe6c,
0xc4,
0x29,
0x0d,
0x14,
0x33,
0x44,
0x13,
0xc3,
0x1b,
0x81,
0oxfs,
0x73,
0xdo,
0xc3,
0oxe6c,

0xbo0,
Ox4e,
0x62,
0x2b,
Oxca,
0x00,
ox6f,
Oxae,
Ox1lc,
0x20,
0x93,
Oxde,
0x6d,
Ox4e,
0x8e,
Oxed,
Ox4e,
0xag,
0x84,
0xbc,
0x42,
Oxab,
0xch,
Oxec,
0x8d,
0x29,
Ox4a,
0xaz2,
0x05,
0x4d,
0x49,
0Oxda

}i

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

11

09/13/2000 Common Cryptographic Algorithms Revision D.1

unsigned char ibox[256] =

{ Oxdd, O0xf3, 0xf7, 0x90, 0x0b, 0xf5, Oxla, 0x48,
0x20, 0x3c, 0x84, 0x04, 0x19, Oxle, 0x22, 0x47,
0x6d, 0xa8, 0x8e, 0xc8, 0x9f, 0x8d, 0x0d, O0xbs,
0xc2, 0x0c, 0x06, 0x2f, 0x43, 0x60, O0xf0, Oxa4,
0x08, 0x99, 0x0e, 0x36, 0x98, 0x3d, 0x2e, 0x81,
Oxcb, Oxab, 0x5c, 0xd5, 0x3f, Oxee, 0x26, 0xlb,
0x94, 0xd9, Oxfc, 0x68, Oxde, Oxcd, 0x23, 0Oxed,
0x96, 0xc5, Oxdc, 0x45, 0x09, 0x25, 0x4f, O0x2c,
0x62, 0x53, Oxbf, O0Oxlc, 0x95, 0x3b, 0x89, 0xO0f,
0x07, 0x56, 0x7f, Oxbd, Oxaa, 0xb7, Oxff, 0x3e,
0x86, 0x77, 0x54, 0x41, 0x52, 0xd4, 0x49, 0xbs,
0xc7, 0x9e, 0x82, 0x71, 0x2a, 0xd0, 0x78, 0x9c,
0x1d, Ox6a, 0x40, Oxae, 0xf4, Oxaf, O0xf2, 0xe9,
0x33, 0x80, 0x61, Oxb4, OxcO, 0x10, Oxa7, Oxbb,
0xb6, 0x5b, 0x73, 0x72, 0x79, 0x7c, 0x8c, 0x51,
0x5e, 0x74, O0xfb, O0xe6, 0x75, 0xdé6, Oxef, O0Ox4a,
0x69, 0x27, 0x5a, 0xb3, 0x0a, 0xe8, 0x50, 0xaO0,
Oxca, 0x46, 0xc3, Oxea, 0x76, 0xl1l5, 0x12, 0xce,
0x03, 0x97, O0xa3, 0Oxdl, 0x30, 0x44, 0x38, 0x91,
0x24, 0x21, Oxcl, Oxdb, 0x5f, 0xe3, 0x59, 0xl14,
0x87, 0xa2, Oxal, 0x92, 0x1f, 0xe2, Oxbc, 0x6e,
0x11, Oxbe, 0x4c, 0x29, O0xe4, 0xc9, 0x63, 0x65,
Oxcc, Oxfa, Oxfl, 0x83, 0x6b, 0x17, 0x70, 0x4d,
0x57, 0xd3, Oxfe, 0x6f, O0xa6, 0x4b, 0xa9, 0x42,
0x6c, 0x9a, 0x18, 0x8a, 0xd2, 0x39, 0x8f, 0x58,
0x13, Oxad, 0x88, 0x28, 0xb0, 0x35, 0xd7, Oxel,
0x5d, 0x93, 0xc4, 0xb9, 0x55, 0x2b, 0x7d, Oxce,
0xe0, 0x31, Oxfd, 0x9b, 0x3a, 0x00, 0x34, O0Oxe5,
0xd8, Oxcf, O0xab5, 0x9d, Oxac, O0xdf, 0x7b, 0xf9,
0x85, 0x67, 0x8b, O0xfe, 0xf8, 0x37, 0x2d, 0x7e,
Oxle, 0xb2, 0x66, 0x01, 0x64, 0x05, Oxeb, 0x02,
Oxec, 0xe7, 0xbl, 0x7a, 0x32, Oxda, Oxba, 0x4e };

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
12

© 0 N O O b~ WN =

a g & B B B B B B B DB DB W WWWWWWWWWNNDNDNDDNDNDNDNDNDRND-=2 2 2 A A A A A
- O © © N O OO A W N =2 O © 0N O G & WN =2 O O© ®N O g & WN = O © 0 ~NO O b WN = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

/* CAVE local functions */

static unsigned char bit val (const unsigned char octet, const int bit)

{
}

static void LFSR cycle(void)

{

return((octet << (7 - bit)) & 0x80) ;

unsigned char temp;
int 1i;
LFSR_B,6) ;

temp = bit val)

LFSR_D,2);
)
)

temp “= bit val
temp “= bit val
temp “= bit val

I

LFSR D, 1
LFSR D, 0

—~ o~ o~ —~

/* Shift right LFSR, Discard LFSR D[0] bit */

for (1 = 3; 1 > 0; i--)
{
LFSR[i] >>= 1;
if (LFSR[i-1] & 0x01)
LFSR[i] |= 0

}

LFSR[0] >>= 1;

LFSR A |= temp;

}

static void Rotate right registers(void)
unsigned int temp reg;
int 1i;

temp reg = Register[15]; /* save 1lsb */

for (1 = 15; 1 > 0; i--)
{
Register[i] >>= 1;
if (Register[i-1] & 0x01)
Register[i] |= 0

}

Register[0] >>= 1;
if (temp_reg & 0x01)
Register[0] |= 0x80;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
13

09/13/2000

Common Cryptographic Algorithms Revision D.1

void CAVE (const int number of rounds,
int *offset 1,
int *offset 2)

unsigned char temp_ rego;

unsigned char lowNibble;

unsigned char hiNibble;

unsigned char temp;

int round_index;

int R_index;

int fail count;

unsigned char T[16];

for (round index = number of rounds - 1;

round_index >= 0;
round_index--)

/* save RO for reuse later */
temp reg0 = Register[0];

for (R_index = 0; R_index < 16; R_index++)
{

fail count = 0;

while (1)

A

*offset 1 += (LFSR_ A Register [R_index]) ;
/* will overflow; mask to prevent */
*offset 1 &= Oxff;
lowNibble = CaveTable[*offset 1] & LOMASK;
if (lowNibble == (Register[R_index] & LOMASK))
{

LFSR_cycle() ;

fail count++;

if (fail count == 32)

LFSR_D++; /* no carry to LFSR C */
break;

}
}

else break;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
14

© 0 N O O b~ WN =

A A B B B WWWWWWWWWWNNDNDNDNDNDNDNDNDNIDN-= 22 A a2 A A aaaa
A W N =2 O © ® N O G B WN =2 O © 0N O B WN - O © 0N O O b WN = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

fail count = 0;
while (1)

{

A

*offset 2 += (LFSR_B Register [R_index]) ;
/* will overflow; mask to prevent */
*offset 2 &= Oxff;
hiNibble = CaveTable[*offset 2] & HIMASK;
if (hiNibble == (Register[R_index] & HIMASK))
{

LFSR_cycle() ;

fail count++;

if (fail count == 32)

{

LFSR_D++; /* no carry to LFSR C */

break;
}
}
else
break;

temp = lowNibble | hiNibble;
if (R_index == 15)

Register[R index] = temp reg0 * temp;
else

Register [R_index] Register[R index+1] * temp;

LFSR_cycle() ;

}

Rotate right registers();

/* shuffle the mixing registers */
for (R_index = 0; R_index < 16; R_index++)

{

temp = CaveTable[l6*round index + R _index] & LOMASK;

T[temp] = Register[R_index];

}

for (R_index = 0; R_index < 16; R_index++)
Register [R_index] = T[R_ index];

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
15

09/13/2000

Common Cryptographic Algorithms Revision D.1

Exhibit 2-5 CAVE Table

table0 is comprised by the 4 LSBs of the array
tablel is comprised by the 4 MSBs of the array

This table is read by rows, e.g. CaveTable[0x12] = 0x77.

hi/lo 0 1 2 3 4 5 6 7 8 9 A | B C D E F
0 D9 (23 | 5F | E6 |[CA | 68 [97 | BO | 7B | F2 | 0C | 34 | 11 [A5 | 8D | 4E
1 OA | 46 | 77 |8D | 10 | O9F | SE [62 | F1 | 34 | EC | A5 [C9 | B3 | D8 | 2B
2 59 | 47 | E3 | D2 | FF |AE | 64 [CA | 15 | 8B | 7D | 38 [21 | BC | 96 | 00
3 49 | 56 | 23 [15 | 97 | E4 |CB | 6F [F2 | 70 | 3C | 8 |BA | D1 | OD | AE
4 E2 | 383 [BA |44 [9F | 8 | 5D | 1C |DE [AB | C7 | 65 | F1 | 76 | 09 | 20
5 8 |BD [OA | F1 [3C | A7 |29 | 93 |CB |45 | 5F | E8 | 10 | 74 | 62 | DE
6 B8 | 77 | 80 (D1 | 12 | 26 |AC | 6D [E9 | CF | F3 | 54 |3A [0B | 95 | 4E
7 Bl | 30 | A4 | 96 | F8 [57 | 49 [8 | 05 | IF | 62 | 7C | C3 | 2B | DA | ED
8 BB |8 | 0D |7A | 97 [13 | 6C | 4E | 51 | 30 [E5S | F2 | 2F | D8 | C4 | A9
9 91 | 76 | FO | 17 | 43 | 38 | 29 [84 | A2 |DB | EF | 65 | 5E | CA | 0D | BC
A E7 | FA | D8 | 81 [6F | 00 | 14 | 42 | 25 [7C | 5D | C9 | 9E | B6 | 33 | AB
B SA | 6F |[9B | D9 | FE | 71 | 44 [C5 |37 | A2 | 8 | 2D [00 | B6 | 13 | EC
C 4E | 96 | A8 |5SA [B5 | D7 | C3 (8D | 3F | F2 | EC | 04 [60 | 71 | 1B | 29
D 04 |79 |[E3 | C7 | 1B |66 | 81 [4A |25 | 9D |DC | SF | 3E | BO | F8 | A2
E 91 | 34 | F6 | 5C | 67 |8 | 73 | 05 | 22 |AA|CB | EE [BF | 18 | DO | 4D
F F5 [36 |AE | 01 |2F | 94 [C3 |49 |8B |BD | 58 | 12 | EO | 77 | 6C | DA

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

16

10

11

12

13

14
15
16

17
18
19

20
21
22
23
24
25
26

27
28
29
30

32

33

34

Common Cryptographic Algorithms Revision D.1

2.2. Authentication Key (A-Key) Procedures

09/13/2000

2.2.1. A-Key Checksum Calculation

Procedure name:

A Key Checksum

Inputs from calling process:

A KEY DIGITS 20 decimal digits
ESN 32 bits

Inputs from internal stored data:

AAV 8 bits

Outputs to calling process:

A KEY CHECKSUM 6 decimal digits

Outputs to internal stored data:

None.

This procedure computes the checksum for an A-key to be entered into
a mobile station. In a case where the number of digits to be entered is
less than 20, the leading most significant digits will be set equal to zero.

The generation of the A-key is the responsibility of the service
provider. A-keys should be chosen and managed using procedures that
minimize the likelihood of compromise.

The checksum provides a check for the accuracy of the A-Key when
entered into a mobile station. The 20 A-Key digits are converted into a
64-bit representation to serve as an input to CAVE, along with the
mobile station's ESN. CAVE is then run in the same manner as for the
Auth_Signature procedure, and its 18-bit response is the A-Key
checksum. The checksum is returned as 6 decimal digits for entry into
the mobile station.

The first decimal digit of the A-Key to be entered is considered to be
the most significant of the 20 decimal digits, followed in succession by
the other nineteen. A decimal to binary conversion process converts the
digit sequence into its equivalent mod-2 representation. For example,
the 20 digits

12345678901234567890
have a hexadecimal equivalent of

AB54A98CEB1FO0AD2.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
17

© ® N o a »~A WO N -

4 A a A
A W N =2 O

15
16

17

18

09/13/2000

Common Cryptographic Algorithms Revision D.1

CAVE will be initialized as shown in. First, the 32 most
significant bits of the 64-bit entered number will be loaded into the
LFSR. If this 32-bit pattern fills the LFSR with all zeros, then the
LFSR will be loaded with the ESN. Then, in all instances, the entire
64-bit entered number will be put into ROO through RO7. The least
significant 24 bits will be repeated into R09, R10, and RI11.
Authentication Algorithm Version (hexadecimal C7) will occupy ROS,
and ESN will be loaded into R12 through R15. CAVE will then be
performed for eight rounds, as described in The checksum is
obtained from the final value of CAVE registers R00, R0O1, R02, R13,
R14, and R15. The two most significant bits of the checksum are equal
to the two least significant bits of RO0 XOR R13. The next eight bits of
the checksum are equal to RO1 XOR R14. Finally, the least significant
bits of the checksum are equal to R02 XOR R15.

The 18-bit checksum is returned as 6 decimal digits for entry into the
mobile station.

Exhibit 2-6 CAVE Initial Loading for A-key Checksum

CAVE Element

Source Identifier Size
(Bits)

32 MSBs of A-key all zeros 32 MSBs of A-key not all zeros

LFSR

ESN 32 MSBs of A-key 32

Register [0-7]

A-key A-key 64

Register [8]

AAV AAV 8

Register [9-11]

24 LSBs of A-key 24 LSBs of A-key 24

Register [12-15]

ESN ESN 32

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

18

© 0 N O O b~ WN

a g o o0 o a B B B B B B B DB BB W W W WWWWWWWNDNDNDNDNDNDNDNDNDN=S 2 A a A
a & O N =2 O © N O O & WN = O © 0N O O & WN =~ O © © N O GO & WN =2 O O© 0N O G & WN = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

Exhibit 2-7 A-key Checksum

/* A Key Checksum has the same header as CAVE (see [Exhibit 2-4) */

static void mull0 (unsigned char 164 [8], unsigned int carry)

{
int 1i;
unsigned int temp;
for (1 = 7; 1 >= 0; i--)
{
temp = ((unsigned int) (i64[i]) * 10) + carry;
i64[1i] = temp & OXFF;
carry = temp >> 8;
}
}
static unsigned long Calc_Checksum(const unsigned char A key[8])
{

int i,offset 1,offset 2;
unsigned long A key checksum;

/* see 1f 32 MSB are zero */

if ((A keyl[0] | A key[1l] | A key[2] | A key[3]) != 0)
{
/* put 32 MSB into LFSR */
for (1 = 0; 1 < 4; i++)
LFSR[1i] = A keyl[il;

}
else
{
/* put ESN into LFSR */
for (i = 0; 1 < 4; i++)
LFSR[1i] = ESN[i];
}

/* put A key into r0-r7 */

for (i = 0; i < 8; i++)
Register[i] = A key[i];

Register[8] = AAV;
/* put 1ls 24 bits of A key into r9-rll */

for (1 = 9; 1 < 12; i++)
Register[i] = A key[5+1-9];

/* put ESN into rl12-rl5 */
for (1 = 12; i < 16; 1i++)
Register[i] = ESN[1-12];

offset 1 = offset 2 = 128;
CAVE (8, &offset 1, &offset 2);

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
19

© 0 N O g b WN -

W W W W W W W W N N NDNDNDNDNDNDNDNDDN=S = a2 A A A a a a
N o OB WN =2 O © 0N O B~ WON -2 O O 0o N~ WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

A key checksum =
(((unsigned long) (Register[0] Register[13]) << 16) +
((unsigned long) (Register[1] * Register([14]) << 8) +
((unsigned long) (Register[2] * Register[15]))) & Ox3ffff;

A

return (A _key checksum) ;

}

/* A KEY DIGITS contains the ASCII digits in the order to be entered */

void A Key Checksum(const char A KEY DIGITS[20],
char A _KEY CHECKSUM[6])
L
int 1;
unsigned char temp A key[8];
unsigned long A key checksum;

/* convert digits to 64-bit representation in temp A key */

for (1 = 0; 1 < 8; i++)
temp A keyl[i] = 0;
for (1 = 0; 1 < 20; i++)

{
}

A key checksum = Calc_Checksum(temp A key) ;

mullO (temp A key, (unsigned int) (A_KEY DIGITS[i] - '0'));

/* convert checksum to decimal digits */

for (1 = 0; 1 < 6; i++)

{
A KEY CHECKSUM[5-i] = '0' + (char) (A_key checksum % 10);
A key checksum /= 10;

}

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
20

10

11

12
13
14

15
16
17
18

19
20
21
22
23
24

25
26

27
28
29
30
31

32
33
34
35
36
37
38

Common Cryptographic Algorithms Revision D.1 09/13/2000

2.2.2. A-Key Verification

Procedure name:

A Key Verify

Inputs from calling process:

A KEY DIGITS from 6 to 26 decimal digits
ESN 32 bits

Inputs from internal stored data:

AAV 8 bits

Outputs to calling process:

A _KEY_VERIFIED Boolean

Outputs to internal stored data:

A-key 64 bits
SSD A 64 bits (set to zero)
SSD B 64 bits (set to zero)

The A-key may be entered into the mobile station by any of several
methods. These include direct electronic entry, over-the-air procedures,
and manual entry via the mobile station’s keypad. This procedure
verifies the A-key entered into a mobile station via the keypad.

The default value of the A-key when the mobile station is shipped from
the factory will be all binary zeros. The value of the A-key is specified
by the operator and is to be communicated to the subscriber according
to the methods specified by each operator. A multiple NAM mobile
station will require multiple A-keys, as well as multiple sets of the
corresponding cryptovariables per A-key.

While A-key digits are being entered from a keypad, the mobile station
transmitter shall be disabled.

When the A-key digits are entered from a keypad, the number of digits
entered is to be at least 6, and may be any number of digits up to and
including 26 digits. In a case where the number of digits entered is less
than 26, the leading most significant digits will be set equal to zero, in
order to produce a 26-digit quantity called the “entry value”.

The verification procedure checks the accuracy of the 26 decimal digit
entry value. If the verification is successful, the 64-bit pattern
determined by the first 20 digits of the entry value will be written to the
subscriber's semi-permanent memory as the A-key. Furthermore, the
SSD A and the SSD B will be set to zero. The return value
A KEY_ VERIFIED will be set to TRUE. In the case of a mismatch,
A KEY VERIFIED is set to FALSE, and no internal data is updated.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
21

a A W N =

09/13/2000 Common Cryptographic Algorithms Revision D.1

The first decimal digit of the “entry value” is considered to be the most
significant of the 20 decimal digits, followed in succession by the other
nineteen. The twenty-first digit is the most significant of the check
digits, followed in succession by the remaining five. For example, the
26 digits

12345678901234567890, 131136
has a hexadecimal equivalent of

AB54A98CEB1F0AD2, 20040.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
22

© 0 N O O b~ WN

A A B B B WWWW W W WWWWNNDNDNDNDNDNDNDNDN-= 22 A a2 A A A A
A W N =2 O © ® N O G B WN =2 O © 0N O & WN - O © 0N O O b WN = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

Exhibit 2-8 A-key Verification

/* A Key Verify has the same header as CAVE (see [Exhibit 2-4) */

/* A KEY DIGITS contains the ASCII digits in the order entered */

int A Key Verify(const char A KEY DIGITS([26])

{

int 1i;
unsigned char temp A key[8];
unsigned long entered checksum;

/* convert first 20 digits to 64-bit representation in temp A key */

for (1 = 0; 1 < 8; i++)
temp A keyl[i] = 0;
for (1 = 0; 1 < 20; 1i++)
mullO (temp A key, (unsigned int) (A_KEY DIGITS[i] - '0'));

}

/* convert last 6 digits to entered checksum */

entered_checksum = 0;
for (1 = 20; i < 26; 1i++)
{
entered_checksum = (entered checksum * 10)
+ (A_KEY DIGITS[i] - '0');

}

if (Calc_Checksum(temp A key) == entered checksum)

{

for (1 = 0; 1 < 8; i++)

{
A key[i] = temp A keyl[il;
SSD A[i] = SSD BI[i] = 0;

}

return TRUE;

}

else

{
}

return FALSE;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
23

10
1"

12

13

14

15
16

17
18
19
20

21
22
23
24
25
26
27
28

29
30
31
32
33

34
35
36

09/13/2000

Common Cryptographic Algorithms Revision D.1

2.3. SSD Generation and Update

2.3.1. SSD Generation Procedure

Procedure name:

SSD_Generation

Inputs from calling process:
RANDSSD 56 bits
ESN 32 bits
Inputs from internal stored data:
AAV 8 bits
A-key 64 bits
Outputs to calling process:

None.

Outputs to internal stored data:

SSD_A NEW 64 bits
SSD B NEW 64 bits

This procedure performs the calculation of Shared Secret Data. The

result is held in memory as SSD A NEW and SSD B NEW until the

SSD_Update procedure (§p.3.2) is invoked. shows the
‘

process graphically. Exhibit 2-10|indicates the operations in ANSI C.

The input variables for this procedure are: RANDSSD (56 bits),
Authentication Algorithm Version (8 bits), ESN (32 bits), and A-key
(64 bits). CAVE will be initialized as follows. First, the LFSR will be
loaded with the 32 least significant bits of RANDSSD XOR’d with the
32 most significant bits of A-key XOR’d with the 32 least significant
bits of A-key. If the resulting bit pattern fills the LFSR with all zeroes,
then the LFSR will be loaded with the 32 least significant bits of
RANDSSD to prevent a trivial null result.

Registers ROO through R07 will be initialized with A-key, RO8 will be
the 8-bit Authentication Algorithm Version (11000111). R09, R10, and
R11 will be the most significant bits of RANDSSD, and the ESN will
be loaded into R12 through R15. Offsetl and Offset2 will initially be
set to 128.

CAVE will be run for 8 rounds as previously described in §2.1. When
this is complete, registers RO0 through R07 will become SSD A NEW
and Registers RO8 through R15 will become SSD B NEW.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

24

RANDSSD —p»
A-key —i
ESN —p

Common Cryptographic Algorithms Revision D.1 09/13/2000

Exhibit 2-9 Generation of SSD_A_NEW and SSD B_NEW

Initialize LFSR,
registers, offsets

'

Internal basic
round of CAVE

At

Quantities passed to CAVE
process at each round:
 contents of LFSR

« values of offsets

* contents of 16 registers

SSD » SSD_A_NEW
post-

process

™ SSD_B_NEW

8 rounds

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

25

© 0 N O O b~ WN

W W W W W W W wWw W N NDNDNDNDNDDNDNDNDN=S = A A a A A A
0 N O O B WN =2 O © 0N O O & WN =2 O © 0N O G & W N = O

09/13/2000

/* SSD_Generation has the same header as CAVE (see [Exhibit 2-4) */

Common Cryptographic Algorithms Revision D.1

Exhibit 2-10 SSD Generation

void SSD_Generation(const unsigned char RANDSSD[7])

{

int i,offset 1,offset 2;

for (1 = 0;

LFSR[i] =
}
if

{

((LFSRI[O]

(1=
LFSR[1

for 0;
1

}

for (1 = 0;

Register[i]
Register([8] =

(i =9;
Register[i]

for

(1 = 12; 1
Register[i]

for

offset 1 =
CAVE (8,

for (i =

{

0;

SSD A NEW[i]
SSD B NEW[i]

i

A

i< 4;

RANDSSD [1+3]

| LFSRI[1]

1++4)

A

A key[i] * A keyl[i+4];

| LFSR[2] | LFSRI[3]) == 0)

< 4; 1+4+)

RANDSSD [1+3] ;

i < 8;
A keyl[i]l;

i< 12;

offset 2 =
&offset 1,

i < 8;

1++4)

AAV;

1++4)
RANDSSD [1i-9] ;

16; i++)
ESN[1i-12];

128;
&offset 2);

1++4)

Register[i];
Register[i+8];

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
26

10

11

12
13

14
15
16

17
18
19
20
21
22
23
24

25

Common Cryptographic Algorithms Revision D.1

2.3.2. SSD Update Procedure

09/13/2000

/* SSD Update has the same header as CAVE (see Exhibit 2-4) */

void SSD Update (void)

{

int 1i;

K-

for (1 = 0;

{

< 8;

SSD_A[i]
SSD_BI[i]

}

SSD A NEW[i]
SSD B NEW[i]

Procedure name:

SSD_Update

Inputs from calling process:

None.

Inputs from internal stored data:
SSD A NEW 64 bits
SSD B NEW 64 bits
Outputs to calling process:

None.

Outputs to internal stored data:

SSD_A 64 bits
SSD B 64 bits

This procedure copies the values SSD A NEW and SSD B NEW into
the stored SSD_A and SSD_B. [Exhibit 2-11|indicates the operations in

ANSI C.

The values SSD A NEW and SSD B NEW calculated by the
SSD_Generation procedure (§ should be validated prior to storing
them permanently as SSD A and SSD B. The base station and the
mobile station should exchange validation data sufficient to determine
that the values of the Shared Secret Data are the same in both locations.
When validation is completed successfully, the SSD_Update procedure
is invoked, setting SSD A to SSD A NEW and setting SSD B to

SSD B_NEW.

Exhibit 2-11 SSD Update

1++4)

’
’

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

27

© O N O O

10

1"

12

13

14

15
16
17
18
19

20
21
22

23
24

25

26
27
28
29
30
31
32
33

34
35
36
37

09/13/2000

Common Cryptographic Algorithms Revision D.1

2.4. Authentication Signature Calculation Procedure

Procedure name:

Auth_Signature

Inputs from calling process:

RAND CHALLENGE 32 bits
ESN 32 bits
AUTH DATA 24 bits
SSD AUTH 64 bits
SAVE REGISTERS Boolean

Inputs from internal stored data:
AAV 8 bits

Outputs to calling process:

AUTH_SIGNATURE 18 bits

Outputs to internal stored data:

SAVED LFSR 32 bits
SAVED OFFSET 1 8 bits
SAVED OFFSET 2 8 bits
SAVED RAND 32 bits
SAVED DATA 24 bits

This procedure is used to calculate 18-bit signatures used for verifying
the authenticity of messages used to request wireless system services,
and for verifying Shared Secret Data.

The initial loading of CAVE for calculation of authentication signatures

is given in Exhibit 2-12
AAV is as defined in §

For authentication of mobile station messages and for base station
challenges of a mobile station, RAND CHALLENGE should be
selected by the authenticating entity (normally the HLR or VLR).
RAND CHALLENGE must be received by the mobile station
executing this procedure. Results returned by the mobile station should
include check data that can be wused to verify that the
RAND CHALLENGE value used by the mobile station matches that
used by the authenticating entity.

For mobile station challenges of a base station, as performed during the
verification of Shared Secret Data, the mobile station should select
RAND CHALLENGE. The selected value of RAND CHALLENGE
must be received by the base station executing this procedure.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

28

a A W N =

10

11
12
13

14
15
16
17
18
19

20
21
22
23
24
25

26
27
28
29
30
31

Common Cryptographic Algorithms Revision D.1 09/13/2000

When this procedure is used to generate an authentication signature for
a message, AUTH DATA should include a part of the message to be
authenticated. = The contents should be chosen to minimize the
possibility that other messages would produce the same authentication
signature.

SSD_AUTH should be either SSD_A or SSD A NEW computed by
the SSD_Generation procedure, or SSD A as obtained from the
HLR/AC.

Exhibit 2-12 CAVE Initial Loading for Authentication Signatures

CAVE Item Source Identifier Size (Bits)
LFSR RAND CHALLENGE 32
Reg [0-7] SSD AUTH 64
Reg [8] AAV 8
Reg [9-11] AUTH_DATA 24
Reg [12-15] ESN 32

CAVE is run for eight rounds. The 18-bit result is
AUTH_SIGNATURE. [Exhibit 2—13| shows the process in graphical

form, while ANSI C for the process is given in Exhibit 2-14

The LFSR will initially be loaded with RAND CHALLENGE. This
value will be XOR'd with the 32 most significant bits of SSD AUTH
XOR'd with the 32 least significant bits of SSD AUTH, then reloaded
into the LFSR. If the resulting bit pattern fills the LFSR with all zeroes,
then the LFSR will be reloaded with RAND CHALLENGE to prevent
a trivial null result.

The 18-bit authentication result AUTH SIGNATURE is obtained from
the final value of CAVE registers R00, RO1, R02, R13, R14, and R15.
The two most significant bits of AUTH SIGNATURE are equal to the
two least significant bits of RO0O XOR R13. The next eight bits of
AUTH_SIGNATURE are equal to RO1 XOR R14. Finally, the least
significant bits of AUTH SIGNATURE are equal to R02 XOR R15.

If the calling process sets SAVE REGISTERS to TRUE, the
RAND CHALLENGE, ESN and AUTH DATA and the contents of
the LFSR, offsets and CAVE registers are saved in internal storage. If
the calling process sets SAVE _REGISTERS to FALSE, the contents of
internal storage are not changed. A means should be provided to
indicate whether the internal storage contents are valid.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

29

09/13/2000

RAND -
CHALLENGE — P

SSD_AUTH —P
AUTH DATA —P
ESN —»

Common Cryptographic Algorithms Revision D.1

Exhibit 2-13 Calculation of AUTH_SIGNATURE

Initialize LFSR,
registers, offsets

'

Intemal basic
round of CAVE

T

Quantities passed to CAVE
process at each round:

e contents of LFSR

* values of offsets

* contents of 16 registers

AUTH_
SIGNATURE
post-
process [P
18 bits

8 rounds

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

30

© o N O O b~ WN

A A B B B B B DB B W W WWWWWWWWNDNDNDNDNDNDNDNDNDN-= 2 a2 a A
0 N O O B WN =2 O © 0N O O Hh WN =2 O O© 0N O O & WN =2 O O© 0N O g~ WN = O

Common Cryptographic Algorithms Revision D.1

Exhibit 2-14 Code for Calculation of AUTH_SIGNATURE

09/13/2000

/* Auth Signature has the same header as CAVE (see Exhibit 2-4)

unsigned long Auth Signature (const unsigned char RAND CHALLENGE [4],

const unsigned char AUTH DATA[3],
const unsigned char *SSD AUTH,
const int SAVE REGISTERS)

int i,offset 1,offset 2;
unsigned long AUTH SIGNATURE;

for (i = 0; i < 4; i++)
{

LFSR[i] = RAND CHALLENGE[i] * SSD AUTH[i] * SSD AUTH[i+4];
}
if ((LFSR A | LFSR B | LFSR C | LFSR D) == 0)
{

for (i = 0; i < 4; i++)

LFSR[i] = RAND CHALLENGE[i];

}
/* put SSD_AUTH into x0-r7 */
for (i = 0; i < 8; i++)

Register[i] = SSD AUTHI[i];
Register[8] = AAV;

/* put AUTH DATA into r9-rll */

for (1 = 9; 1 < 12; i++)
Register[i] = AUTH DATA[i-9];

/* put ESN into rl2-rl5 */

for (1 = 12; i < 16; 1i++)
Register[i] = ESN[1-12];

offset 1 = offset 2 = 128;
CAVE (8, &offset 1, &offset 2);

AUTH_SIGNATURE =
(((unsigned long) (Register[0] Register[13]) << 16) +
((unsigned long) (Register[1] * Register([14]) << 8) +

A

*/

((unsigned long) (Register[2] * Register[15]))) & Ox3ffff;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
31

© 0 N O O b~ WN =

N = = 2 a4 a4 a a a a oo
© © o N O O b~ W N = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

if (SAVE REGISTERS)

{

/* save LFSR and offsets */

SAVED OFFSET 1 = offset 1;

SAVED OFFSET 2 = offset 2;

for (1 = 0; 1 < 4; 1i++)

{
SAVED_LFSR[i] = LFSRI[i];
SAVED RAND [1] RAND CHALLENGE [1i];
if (1 < 3)

{
}

SAVED DATA[i] = AUTH DATA[il];

}

return (AUTH_SIGNATURE) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
32

o g b~ W N

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

Common Cryptographic Algorithms Revision D.1 09/13/2000

2.5. Secret Key and Secret Parameter Generation

This section describes four procedures used for generating secret keys
and other secret parameters for use in CMEA, Enhanced CMEA
(ECMEA) and the voice privacy mask. The generation of distinct
secrets for ECMEA-encryption of financial and non-financial messages
(e.g. user data) is addressed.

The first procedure uses SSD_B and other parameters to generate
e the secret CMEA key for message encryption, and

e the voice privacy mask.

The second procedure uses the secret CMEA key produced in the first
procedure to generate the secrets used by ECMEA to encrypt financial
messages.

The third procedure uses the secret CMEA key produced in the first
procedure to generate the secret non-financial seed key needed to start
the fourth procedure.

The fourth procedure uses the secret non-financial seed key produced in
the third procedure to generate the secrets used by ECMEA to encrypt
non-financial messages.

For backward compatibility with CMEA, the first procedure will always
be executed. The secret CMEA key will exist in both the infrastructure
and the mobile station.

When ECMEA is implemented, the second, third, and fourth
procedures will be executed to produce the secret keys and parameters
needed to encrypt both financial and non-financial messages.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
33

14

15

16

17
18

19
20
21
22
23

24
25
26
27
28
29
30
31
32

09/13/2000

Common Cryptographic Algorithms Revision D.1

2.5.1. CMEA Encryption Key and VPM Generation Procedure

Procedure name:

Key VPM_Generation

Inputs from calling process:

None.

Inputs from internal stored data:

SAVED LFSR 32 bits
SAVED_ OFFSET 1 8 bits
SAVED_ OFFSET 2 8 bits
SAVED RAND 32 bits
SAVED DATA 24 bits
SSD B 64 bits
AAV 8 bits

Outputs to calling process:

None.

Outputs to internal stored data:

CMEAKEY/[0-7] 64 bits
VPM 520 bits

This procedure computes the CMEA key for message encryption and
the voice privacy mask. Prior to invoking this procedure, the
authentication signature calculation procedure (must have been
invoked with SAVE REGISTERS set to TRUE. This procedure must
be invoked prior to execution of the encryption procedure (§.

The processes for generation of the CMEA key and the voice privacy
mask (VPM) will generally be most efficient when concatenated as
described in the following sections (§R2.5.1.1) and §2.5.1.2). The post-
authentication cryptovariables to be used are those from the last
authentication signature calculation for which the calling process set
SAVE REGISTERS to true. This should generally be the
authentication calculation for the message that establishes the call for
which encryption and/or voice privacy is to be invoked. See

13"and Exhibit 2-14]for graphical detail of the generation process.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

34

Common Cryptographic Algorithms Revision D.1 09/13/2000

2.5.1.1. CMEA key Generation

CMEA key generation is depicted in [Exhibit 2-16| and Exhibit 2-17]
Eight octets of CMEA session key are derived by running CAVE
through an 8-round iteration and then two 4-round iterations following
an authentication. This is shown in the upper portion of
and . The post-authentication initialization and output

processing requirements are as follows (for analog phones iterations 4 -

w N O a b~ W N

10
11
12

13
14

15
16

17

18
19
20
21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

14 are omitted:

First, the LFSR will be re-initialized to the exclusive-or sum of
SAVED LFSR and both halves of SSD B. If the resulting bit
pattern fills the LFSR with all zeroes, then the LFSR will be
loaded with SAVED RAND.

Second, registers ROO through RO7 will be initialized with
SSD B instead of SSD_A.

Third, Registers R09, R10, and R11 will be loaded with
SAVED DATA.

Fourth, Registers R12 through R15 will be loaded with ESN.

Fifth, the offset table pointers will begin this process at their
final authentication value (SAVED OFFSET 1 and
SAVED OFFSET 2), rather than being reset to a
predetermined state.

Sixth, the LFSR is loaded before the second and third post-
authentication iterations with a “roll-over RAND” comprised of
the contents of R00, RO1, R14, and R15. If the resulting bit
pattern fills the LFSR with all zeroes, then the LFSR will be
loaded with SAVED RAND.

The CMEA key octets drawn from iterations two and three are labeled:

kO = register[4] XOR register[8]; (iteration 2)
k1 = register[5] XOR register[9]; (iteration 2)
k2 =register[6] XOR register[10]; (iteration 2)
k3 = register[7] XOR register[11]; (iteration 2)
k4 = register[4] XOR register[8]; (iteration 3)
k5 = register[5] XOR register[9]; (iteration 3)
k6 = register[6] XOR register[10]; (iteration 3)
k7 = register[7] XOR register[11]; (iteration 3)

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

35

09/13/2000 Common Cryptographic Algorithms Revision D.1

1 2.5.1.2. Voice Privacy Mask Generation

VPM generation is a continuation of the CMEA key generation and
should be performed at the same time under the same conditions as the
CMEA key. CAVE is run for eleven iterations beyond those that
produced the CMEA octets. Each iteration consists of four rounds.
The CAVE registers RO0 through R15 are not reset between iterations,
but the LFSR is reloaded between iterations with the “rollover RAND”

as described in §p.5.1.1]

® N O O b~ W N

9 Exhibit 2-15 CMEA Key and VPM Generation

10 /* Key VPM Generation has the same header as CAVE (see Exhibit 2-4) */

12 static void roll LFSR(void)

14 int i;

15

16 LFSR_A = Register[0];

17 LFSR B = Register([1];

18 LFSR _C = Register([14];

19 LFSR D = Register([15];

20

21 if ((LFSR_A | LFSR_ B | LFSR_C | LFSR_ D) == 0)
22 {

23 for (i = 0; 1 < 4; i++)

24 LFSR[i] = SAVED RANDI[i];
25 }

26 }

28 void Key VPM Generation(void)

20

30 int i,j,r ptr,offset 1,o0ffset 2,vpm ptr;

31

32 /* iteration 1, first pass through CAVE */
33

34 for (1 = 0; 1 < 4; i++)

35 LFSR[i] = SAVED LFSR[i] ” SSD B[i] " SSD B[i+4];
36

a7 if ((LFSR_A | LFSR_ B | LFSR_C | LFSR_ D) == 0)
38

39 for (i = 0; 1 < 4; i++)

40 LFSR[i] = SAVED RAND[i];

7 }

42

43 for (1 = 0; 1 < 8; i++)

44 Register[i] = SSD B[i];

45

46 Register [8] = AAV;

47

48 /* put SAVED DATA into r9-rll */

49

50 for (1 = 9; 1 < 12; i++)

51 Register[i] = SAVED DATA[1-9];

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
36

© 0 N O g b WN -

A A B B B B BB B DB W W WWWWWWWWNDNDNDNDNDNDNDNDNDN=S 2 A a A
© 0 N O O B WON -2 O © 00N OO hr WN =2 O © 0 N OO B~ WN-=2 O O© © N O O s wWN = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

/* put ESN into rl2-rl5 */

for (1 = 12; i < 16; 1i++)
Register[i] = ESN[1-12];

offset 1 = SAVED OFFSET 1;
offset 2 = SAVED OFFSET 2;

CAVE (8, &offset 1, &offset 2);

/* iteration 2, generation of first CMEA key parameters */

roll LFSR();
CAVE (4, &offset 1, &offset 2);
for (1 = 0; 1 < 4; 1i++)
cmeakey[i] = Register[i+4] * Register[i+8];

/* iteration 3, generation of second CMEA key parameters */

roll LFSR();
CAVE (4, &offset 1, &offset 2);
for (1 = 4; 1 < 8; 1i++)
cmeakey[i] = Register[i] * Register[i+4];

/* iterations 4-13, generation of VPM */

vpm _ptr = 0;
for (1 = 0; 1 < 10; i++)
{
roll LFSR();
CAVE (4, &offset 1, &offset 2);
for (r_ptr = 0; r ptr < 6; r_ptr++)
{
VPM [vpm_ptr] = Register[r ptr+2] * Register[r ptr+8];
vpm ptr++;

}

/* iteration 14, generation of last VPM bits */

roll LFSR() ;
CAVE (4, &offset 1, &offset 2);
for (j = 0; j < 5; Jj++)

VPM [vpm_ptr] = Register[j+2] * Register[j+8];
vpm ptr++;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
37

09/13/2000

Common Cryptographic Algorithms Revision D.1

Exhibit 2-16 Generation of CMEA Key and VPM

post-auth contents of LFSR SSD_B(MSB) XOR SSD_B(LSB)

'

key:

64-bit SSD_B

32-bit ESN

24-bit AUTH_DATA

8-bit Authentication
Algorithm Version

Notes:

Registers R0OO0 thru

R15 are not re-initialized
for iterations #2 thru #14

"Round" number is reset to
3 and counted down to O for
iterations #2 thru #14

Offsets are not reinitialized
for iterations #2 thru #14

CAVE #1
8 rounds

'

32-bit rollover RAND
(R0O0O, RO1, R14, R15)

CAVE #2
4 rounds

I . CMEAKO, k1, k2, k3

(RO4 - RO7 XOR R08 - R11)

'

32-bit rollover RAND
(R0OO, RO1, R14, R15)

CAVE #3
4 rounds

| g CMEAK4, K5, k6, k7

(RO4 - RO7 XOR R08 - R11)

y

32-bit rollover RAND
(RO0O, RO1, R14, R15)

CAVE #4
4 rounds

| g 48 bits of VPM

(R0O2-R07 XOR R08-R13)

'

32-bit rollover RAND
(R0OO, RO1, R14, R15)

CAVE
#5 thru #13
4 rounds

| g 48 bits of VPM (X9)

(R02-R07 XOR R08-R13)

'

32-bit rollover RAND
(R0O0O, RO1, R14, R15)

CAVE #14
4 rounds

| g 40 bits of VPM

(R02-R06 XOR R08-R12)

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

38

Common Cryptographic Algorithms Revision D.1 09/13/2000

Exhibit 2-17 Detailed Generation of CMEA Key and VPM

LFSR post-AUTH contents —
SSD_B —b»|

AUTH_DATA —p»-|

ESN —

Offset post-AUTH contents —m|

Initialize LFSR,
registers, offsets

Quantities passed to CAVE

process at each round:
¢ contents of LFSR
¢ values of offsets

* contents of 16 registers

Internal basic
round of CAVE

8 rounds

Replace LFSR contents |

\RA

) 4 bytes of
Interna:‘ t():asw CMEA CMEAKEY
round of CAVE post- -
process ko, k1, k2, k3
4 rounds »
2 iterations k4, kS, k6, k7
Replace LFSR contents | Iy®
Internal basic VPM 48 bits of VPM:

round of CAVE post- -
process -
P
-
4 rounds -
P
= <
= <
| T _'_‘>
11 iterations o -
T L

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

39

10

1"

12
13

14
15
16
17
18
19

20
21
22

23
24

25
26

27

28
29
30
31
32
33

34
35

36

37

38

09/13/2000 Common Cryptographic Algorithms Revision D.1

2.5.2. ECMEA Secrets Generation for Financial Messages
Procedure

Procedure name:

ECMEA_ Secret Generation

Inputs from calling process:

None.

Inputs from internal stored data:

CMEAKEY/[0-7] 64 bits

Outputs to calling process:

None.

Outputs to internal stored data:

ECMEA KEY [0-7] 64 bits
OFFSET KEY[0-3] 32 bits

The CMEA Encryption Key and VPM Generation Procedure defined in
§is used to generate a CMEA key on a per-call basis. ECMEA for
financial messages requires additional secret values to be generated on
a per-call basis. This procedure accomplishes this by running the CAVE

algorithm initialized by the original CMEA key (64 bits).

generation procedure is depicted in [Exhibit 2-18

First, the LFSR will be loaded with the 32 MSBs of the CMEA
key. If these MSBs are all zero, then a constant, 0x31415926,
will be loaded instead.

Second, registers ROO through RO7 will be loaded with the
CMEA key.

Third, registers RO8 through R15 will be loaded with the one’s-
complement of the CMEA key.

Fourth, the offset table pointers will be reset to all zeros.

Fifth, the LFSR is loaded before each of the second through
fourth iterations with a “roll-over RAND” comprised of the
contents of R00, R0O1, R14, and R15 at the end of the previous
iteration. If the resulting bit pattern fills the LFSR with all
zeros, then the LFSR will be loaded with the constant,
0x31415926.

The ECMEA key octets drawn from iterations two and three are
labelled:

ecmea_key[0] = register[4] XOR register[8]; (iteration 2)
ecmea_key[1] = register[5] XOR register[9]; (iteration 2)
ecmea_key [2] = register[6] XOR register[10]; (iteration 2)

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

40

The

© 0 N O

10

1"

12

13

14

Common Cryptographic Algorithms Revision D.1 09/13/2000

+ ccmea_key[3] = register[7] XOR register[11]; (iteration 2)

+ ecmea_key[4] = register[4] XOR register[8]; (iteration 3)

+ ccmea_key[5] = register[5] XOR register[9]; (iteration 3)

+ ecmea_key[6] = register[6] XOR register[10]; (iteration 3)

+ ccmea_key[7] = register[7] XOR register[11]; (iteration 3)
Note: if, during this process, any of the octets of ECMEA KEY as
defined above are zero, that octet is replaced by the next nonzero octet

generated. Additional iterations are performed as necessary to generate
eight nonzero octets for ECMEA KEY.

The offset_key octets drawn from iteration 4 are labeled:

+ offset_key[0] = register[4] XOR register[8]; (iteration 4)
+ offset_key [1] = register[5] XOR register[9]; (iteration 4)
+ offset key [2] = register[6] XOR register[10]; (iteration 4)
« offset_key [3] = register[7] XOR register[11]; (iteration 4)

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
41

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-18 Generation of ECMEA Secrets

LFSR loaded with CMEA key (32 MSBs)

'

key: -
64-bit CMEA key CAVE #1
64-bit ones complement 8 rounds
of CMEA key
32-bit rollover RAND
(R0O0O, RO1, R14, R15)
CAVE #2 | . €Cmea_key[0-3]
. 4 rounds (R04-R07 XOR R08-R11)
Notes:
Registers R0O0 thru
R15 are not re-initialized 1
for iterations #2 thru #14 32-bit rollover RAND
(R0O0O, RO1, R14, R15)

Offsets are not reinitialized

for iterations #2 thru #14
CAVE #3 | . €Cmea_key[4-7]

4 rounds (RO-R07 XOR R08-R11)
32-bit rollover RAND
(R0O0O, RO1, R14, R15)

CAVE #4 | p Offset_key[0-3]
4 rounds (RO4-R07 XOR R08-R11)

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
42

Common Cryptographic Algorithms Revision D.1 09/13/2000

Exhibit 2-19 ECMEA Secret Generation

/* ECMEA Secret Generation has the same header as ECMEA (see [Exhibit 2-

© o N O O b~ WN

A B B B BB DB DB WWWWWWWWWWNDNDNDNDNDNDNDNDNDN=S 2 a2 a A
N o O b WN =2 O © 0N O B~ OON -2 O O 00N O Rr WN-=22 O © 0o N O O b~ WN = O

30) */

static void
LFSR_A
LFSR_B
LFSR_C
LFSR D =

if ((LFSR_ A | LFSR B | LFSR C |

{

roll LFSR_2(void)

Register[0];
Register[1]

Register[14];
Register[15]

LFSR A = 0x31;

LFSR B
LFSR_C
LFSR D

}

void ECMEA_ Secret Generation(void)

{

0x41;
0x59;
0x26 ;

’

int i,j,o0ffset 1,offset 2;

/* iteration 1,

for (i =
LFSR [

if ((LFSR A | LFSR B | LFSR C | LFSR D) == 0)

{

0; 1 < 4;
il

LFSR A = 0x31;

LFSR B
LFSR_C
LFSR D

}

for (i =

0x41;
0x59;
0x26 ;

0; 1 < 8;

1++4)

= cmeakey[i+4];

1++4)

Register[i] = cmeakey[i];

for (i =

Register[i] = ~cmeakey[i-8];

offset 1
offset 2

CAVE (8,

8; 1 < 16;

= 0x0;
0x0;

&offset 1,

1++4)

&offset 2);

first pass through CAVE */

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
43

© 0 N O O b~ WN =

W W NN N DN DNDNDNDNDNDDN =S a2 a2 A A A A
- O © ©® N O O A W N = O © 0N O O & W N = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

/* Iterations 2 and 3, generation of ECMEA KEY */

/* see if new key material needs to be generated */
if(J == 4)
-

J=0;

roll LFSR 2();

CAVE (4, &offset 1, &offset 2);

}

ecmea_key[i] = Register[j+4]
J++;

A

Register[j+8];

/* advance to next octet of ECMEA KEY if not zero; otherwise

generate another value */

if (ecmea key[i] != 0)
14+;

}

/* iteration 4, generation of ECMEA offset keys */

roll LFSR 2();
CAVE (4, &offset 1, &offset 2);
for (1 = 0; 1 < 4; 1i++)

offset key[i] = Register[i+4]

A

Register[i+8];

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
44

10

11

12
13
14
15
16
17

18
19
20

21
22

23
24

25

26
27
28
29
30

31

32

33

34

35

36

Common Cryptographic Algorithms Revision D.1

2.5.3. Non-Financial Seed Key Generation Procedure

Procedure name:

Non-Financial Seed Key Generation

Inputs from calling process:

None.

Inputs from internal stored data:

CMEAKEY/[0-7] 64 bits

Outputs to calling process:

None.

Outputs to internal stored data:

SEED NF_KEY[0-4] 40 bits

09/13/2000

The CMEA Encryption Key and VPM Generation Procedure defined in
§ is used to generate a CMEA key on a per-call basis. A non-
financial seed key is required before generating the ECMEA secrets for
non-financial messages. This procedure accomplishes this by running
the CAVE algorithm initialized by the original CMEA key (64 bits).

The generation procedure is depicted in [Exhibit 2-20

First, the LFSR will be loaded with the 32 LSBs of the CMEA
key. If these MSBs are all zero, then a constant, 0x31415926,
will be loaded instead.

Second, registers ROO through RO7 will be loaded with the
one’s-complement of the CMEA key.

Third, registers RO8 through R15 will be loaded with the
CMEA key.

Fourth, the offset table pointers will be reset to all zeros.

Fifth, the LFSR is loaded before the second iteration with a
“roll-over RAND” comprised of the contents of R00, RO1, R14,
and R15 at the end of the previous iteration. If the resulting bit
pattern fills the LFSR with all zeros, then the LFSR will be
loaded with the constant, 0x31415926.

The non-financial seed key octets drawn from iteration two are labeled:

seed nf key[0] = register[2] XOR register[8]; (iteration 2)
seed nf key[l]=register[3] XOR register[9]; (iteration 2)
seed nf key[2] = register[4] XOR register[10]; (iteration 2)
seed nf key[3]=register[5] XOR register[11]; (iteration 2)
seed nf key [4] = register[6] XOR register[12]; (iteration 2)

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

45

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-20 Generation of Non-Financial Seed Key

LFSR loaded with CMEA key (32 LSBs)

key: -

64-bit ones complement CAVE #1
of CMEA key 8 rounds
64-bit CMEA key

32-bit rollover RAND
(R0O0O, RO1, R14, R15)

CAVE #2 | p» 40-bit SEED_NF key
4 rounds (R0O2-R06 XOR R08-R12)

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
46

© o N O O b~ WN

W W W W W W W wWw W N NDNDNDNDNDDNDNDNDN=S = A A a A A A
0 N O O B WN =2 O © 0N O O & WN =2 O © 0N O G & W N = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

Exhibit 2-21 Non-Financial Seed Key Generation

/* Non Financial Seed Key Generation has the same header as ECMEA (see
Exhibit 2-30) */

void Non Financial Seed Key Generation(void)

{
int i,offset 1,offset 2;
/* iteration 1, first pass through CAVE */
for (1 = 0; 1 < 4; i++)
LFSR[i] = cmeakey[i];
if ((LFSR A | LFSR B | LFSR C | LFSR D) == 0)
{
LFSR_A = 0x31;
LFSR_B = 0x41;
LFSR_C = 0x59;
LFSR_ D = 0x26;
}
for (1 = 0; 1 < 8; i++)
Register[i] = ~cmeakey[i];
for (1 = 8; 1 < 16; i++)
Register[i] = cmeakey[i-8];
offset 1 = 0x0;
offset 2 = 0x0;
CAVE (8, &offset 1, &offset 2);
/* iteration 2, generation of seed nf key */
roll LFSR_2(); /* defined in Exhibit 2-19]| */
CAVE (4, &offset 1, &offset 2);
for (i = 0; 1 < 5; i++)
seed nf key[i] = Register[i+2] * Register[i+8];
}

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
47

10

1"

12
13

14
15
16
17
18
19

20
21
22

23
24

25

26
27

28

29

30
31
32
33
34
35

09/13/2000

Common Cryptographic Algorithms Revision D.1

2.5.4. ECMEA Secrets Generation for Non-Financial Messages
Procedure

Procedure name:

Non-Financial Secret Generation

Inputs from calling process:

None.

Inputs from internal stored data:

SEED NF_KEY[0-4] 40 bits

Outputs to calling process:

None.

Outputs to internal stored data:

ECMEA_NF KEY[0-7] 64 bits
OFFSET_NF_KEY[0-3] 32 bits

The Non-Financial Seed Key Generation Procedure defined in §2.5.3]is
used to generate a seed key on a per-call basis. ECMEA for non-
financial messages requires additional secret values to be generated on
a per-call basis. This procedure accomplishes this by running the CAVE

algorithm initialized by the original seed key (40 bits). The generation
procedure is depicted in [Exhibit 2-22

» First, the LFSR will be loaded with the 32 MSBs of the
SEED NF key. If these MSBs are all zero, then a constant,
0x31415926, will be loaded instead.

* Second, registers RO0 through R04 will be loaded with the 40-
bit SEED NF key.

* Third, registers R0O5 through R07 will be loaded with zeros.

* Fourth, registers R08 through R12 will be loaded with the
one’s-complement of the 40-bit SEED_NF key.

* Fifth, registers R13 through R15 will be loaded with zeros.
+ Sixth, the offset table pointers will be reset to all zeros.

* Seventh, the LFSR is loaded before each of the second through
seventh iterations with a “roll-over RAND” comprised of the
contents of R00, RO1, R14, and R15 at the end of the previous
iteration. If the resulting bit pattern fills the LFSR with all
zeros, then the LFSR will be loaded with the constant,
0x31415926.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

48

10

1"
12
13
14

15

16

17

18

19

Common Cryptographic Algorithms Revision D.1 09/13/2000

The ECMEA NF key octets drawn from iterations two and three are
labeled:

* ecmea nf key[0] = register[4] XOR register[8]; (iteration 2)

+ ccmea_nf key[1] = register[5] XOR register[9]; (iteration 2)

+ ecmea nf key[2] = register[6] XOR register[10]; (iteration 2)

+ ccmea_nf key[3] = register[7] XOR register[11]; (iteration 2)

+ ecmea nf key[4] = register[4] XOR register[8]; (iteration 3)

+ ccmea_nf key[5] = register[5] XOR register[9]; (iteration 3)

+ ecmea nf key[6] = register[6] XOR register[10]; (iteration 3)

+ ccmea_nf key[7] = register[7] XOR register[11]; (iteration 3)
Note: if, during this process, any of the octets of ECMEA NF KEY as
defined above are zero, that octet is replaced by the next nonzero octet

generated. Additional iterations are performed as necessary to generate
eight nonzero octets for ECMEA NF KEY.

The offset_key octets drawn from iteration 4 are labeled:

+ offset nf key[0] = register[4] XOR register[8]; (iteration 4)
+ offset nf key[1] = register[5] XOR register[9]; (iteration 4)
+ offset nf key[2] = register[6] XOR register[10]; (iteration 4)
+ offset_nf key3] = register[7] XOR register[11]; (iteration 4)

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
49

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-22 Generation of Non-Financial Secrets

LFSR loaded with SEED_NF key (32 MSBs)

¢

key: L
40-bit SEED_NF key CAVE #1
24 bit zero 8 rounds

40-bit ones complement
of SEED_NF key

24 bit zero ¢

32-bit rollover RAND
(ROO, RO1, R14, R15)

CAVE #2 ecmea_nf_key[0-3]
N i 4 rounds (R0O4-R07 XOR R08-R11)
otes:
Registers R00 thru
R15 are not re-initialized
for iterations #2 thru #7 32-bit rollover RAND
(ROO, RO1, R14, R15)
Offsets are not reinitialized
for iterations #2 thru #7
CAVE #3 ecmea_nf_key[4—7]
4 rounds (RO-R07 XOR R08-R11)
32-bit rollover RAND
(ROO, RO1, R14, R15)
CAVE #4 | - Offset_nf_key[0-3]
4 rounds (R0O4-R07 XOR R08-R11)

Exhibit 2-23 Non-Financial Secret Generation

/* Non Financial Secret Generation has the same header as ECMEA (see
Exhibit 2-30) */

void Non Financial Secret Generation(void)

{

int i,j,o0ffset 1,offset 2;

/* iteration 1,

first pass through CAVE */

for (1 = 0; 1 < 4; i++)
LFSR[1] = seed nf key[i+1];

if ((LFSR A | LFSR B | LFSR C | LFSR D) == 0)

{

LFSR_A = 0x31;
LFSR B = 0x41;

LFSR_C
LFSR D =

0x59;
0x26;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
50

© o N O O B W N =

A A B B B B B BB DB W W WWWWWWWWNDNDNDDNDNDNDNDNDNDN-=S 2 A a A A
© 0 N O O B WON -2 O © 00N O hr WN =2 O © 0N OO B~ WN-=2 O © 0N O O s~ wWN = O

Common Cryptographic Algorithms Revision D.1

for (1 = 0; 1 < 5; i++)
Register[i] = seed nf key[i];
for (1 = 5; 1 < 8; i++)
Register[i] = 0;
for (1 = 8; 1 < 13; i++)
Register[i] = ~seed nf key[i-8];
for (1 = 13; i < 16; 1i++)

Register[i]

0;

offset 1 = 0x0;
offset 2 0x0;

CAVE (8, &offset 1, &offset 2);

/* Iterations 2 and 3, generation of ECMEA NF KEY */

/* see if new key material needs to be generated */

if(j == 4)
{
j = 0;
roll LFSR 2();
CAVE (4, &offset 1, &offset 2);

}

ecmea nf key[i] = Register[j+4] * Register[j+8];
J++;

09/13/2000

/* advance to next octet of ECMEA NF KEY if not zero; otherwise

generate another value */
if (ecmea nf key[i] != 0)

14+;

}

/* iteration 4, generation of ECMEA offset nf key */

roll LFSR 2(); /* defined in Exhibit 2-19| */
CAVE (4, &offset 1, &offset 2);
for (1 = 0; 1 < 4; 1i++)
offset nf key[i] = Register[i+4] * Register[i+8];

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

51

10

11

12

13

14
15

16
17
18
19

20
21
22

23

25

26

27

28

29
30

09/13/2000 Common Cryptographic Algorithms Revision D.1

2.6. Message Encryption/Decryption Procedures

2.6.1. CMEA Encryption/Decryption Procedure

Procedure name:

Encrypt

Inputs from calling process:

msg_buf[n] n*8 bits, n > 1

Inputs from internal stored data:

CMEAKEY([0-7] 64 bits

Outputs to calling process:

msg_buf[n] n*8 bits

Outputs to internal stored data:

None.

This algorithm encrypts and decrypts messages that are of length n*8
bits, where n> 1. Decryption is performed in the same manner as
encryption.

The message is first stored in an n-octet buffer called msg buf [],
such that each octet is assigned to one “msg buf []” value.
msg_buf [] will be encrypted by means of three operations before it
is ready for transmission.

This process uses the CMEA eight-octet session key to produce
enciphered messages via a unique CMEA algorithm. The process of
CMEA key generation is described in §p.5.1]

The function tbox() is frequently used. This is defined as:

tbox(z) = C(((C(((C(((C((z XOR k0)+k1)+z)XOR k2)+k3)+z)XOR k4)+k5)+z)XOR k6)+k7)+z

where “+” denotes modulo 256 addition,

“XOR” is the XOR function,

[T3RT)

z” is the function argument,
kO,. .,k7 are defined above,

g C() is the outcome of a CAVE 8-bit table look-up, (Exhibit |
5]

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
52

© © N o O b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Common Cryptographic Algorithms Revision D.1 09/13/2000

xhibit 2-24| shows ANSI C code for an algorithmic procedure for
tbox().

Exhibit 2-24 tbox

/* tbox has the same header as CAVE (see [Exhibit 2-4) */

static unsigned char tbox(const unsigned char z)

{

int k index, i;
unsigned char result;

k _index = 0;

result = z;
for (1 = 0; 1 < 4; 1i++)
{
result “= cmeakeyl[k index];

result += cmeakey[k index+1];
result = z + CaveTable[result];
k_index += 2;

}

return (result) ;

The CMEA algorithm is the message encryption process used for both
the encryption and decryption of a message. Each message to which the
CMEA algorithm is applied must be a multiple of 8 bits in length. The
CMEA aliorithm may be divided into three distinct manipulations. See

xhibit 2-25

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
53

© 0 N O O b~ WN

W W W W W W W wWw W N NDNDNDNDNDDNDNDNDN=S = A A a A A A
0 N O O B WN =2 O © 0N O O & WN =2 O © 0N O G & W N = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-25 CMEA Algorithm

/* CMEA has the same header as CAVE (see [Exhibit 2-4) */

void CMEA (unsigned char *msg buf, const int octet count)

{

int msg index,half;
unsigned char k,z;

/* first manipulation (inverse of third) */

~= FH N

k = tbox((unsigned char) (z * (msg index & O0xff)));
msg buf [msg index] += k;
z += msg buf [msg index];

}

/* second manipulation (self-inverse) */

half = octet count/2;
for (msg index = 0; msg_index < half; msg index++)

{
msg_buf [msg_index] “=
msg_buf [octet count - 1 - msg_index] | 0x01;

/* third manipulation (inverse of first) */

~= FH N

k = tbox((unsigned char) (z * (msg index & O0xff)));
z += msg _buf [msg index];
msg buf [msg index] -= k;

}

0;
or (msg index = 0; msg_index < octet count; msg_ index++)

0;
or (msg index = 0; msg_index < octet count; msg_ index++)

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
54

© N o O

10

11

12

13

14

15

16
17

18
19
20
21

22
23
24

25
26

27
28

29
30

31
32

Common Cryptographic Algorithms Revision D.1 09/13/2000

2.6.2. ECMEA Encryption/Decryption Procedure

Procedure name:

ECMEA

Inputs from calling process:

msg_buf[n] n*8 bits, n > 1
Sync[0-1] 16 bits
Decrypt 1 bit
Data_type 1 bit

Inputs from internal stored data:

ECMEA KEY[0-7] 64 bits
offset_key[0-3] 32 bits

Outputs to calling process:

msg_buf[n] n*8 bits

Outputs to internal stored data:

None.

This algorithm encrypts and decrypts messages that are of length n*8
bits, where n > 1.

The message is first stored in an n-octet buffer called msg buf [],
such that each octet is assigned to one “msg_buf []” value. The input
variable sync should have a unique value for each message that is
encrypted. The same value of sync is used again for decryption.

This process uses the ECMEA eight-octet session key to produce
enciphered messages via an enhanced CMEA algorithm. The process
of ECMEA key generation is described in §p.5.2]

The decrypt variable shall be set to 0 for encryption, and to 1 for
decryption.

The data_type variable shall be set to 0 for financial messages, and
to 1 for non-financial messages.

ECMEA encryption of financial messages uses ECMEA key and
offset_key.

ECMEA encryption of non-financial messages uses ECMEA NF key
and offset nf key.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
55

N

10

1"
12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

09/13/2000

Common Cryptographic Algorithms Revision D.1

The function etbox() is frequently used. This is defined as:

etbox(z,k) = I(II(II(I(III(I((I(z+k0)XOR k1)+k2)XOR k3)+k4)XOR k5)+k6)XOR k7)-k6)XOR k5)-
k4)XOR k3)-k2)XOR k1)-k0

where

“+” denotes modulo 256 addition,
“-” denotes modulo 256 subtraction,
“XOR” is the XOR function,

z” is the function argument,

kO,. .,k7 are the eight octets of ECMEA key,

and 1() is the outcome of the ibox 8-bit table look-up, (Exhibit |

D-2).

xhibit 2-26[shows ANSI C code for an algorithmic procedure for

tbox().

Exhibit 2-26 Enhanced tbox

/* enhanced tbox has the same header as ECMEA (see Exhlblt 2—30p */

unsigned char etbox(const unsigned char z,

const unsigned char *ecmea_ key)

{

unsigned char t;

(e e il e il e il el el elelelelleleleleie

ibox[(z + ecmea key[0])
= ibox [t * ecmea key[1]];
ibox[(t + ecmea key[2])
ibox [t * ecmea key[3]];
= ibox[(t + ecmea key[4])
ibox [t * ecmea key[5]];
ibox[(t + ecmea keyl[6])
= ibox [t * ecmea key[7]];
ibox[(t - ecmea keyl[6])
ibox [t * ecmea key[5]];
= ibox[(t - ecmea key([4])
ibox [t * ecmea key[3]];
ibox[(t - ecmea key[2])
= ibox [t * ecmea key[1]];
(t - ecmea key[0]) & O

return t;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

56

a A W N =

© 0 N O

10
11

12

13

14
15
16
17

18
19
20
21
22

23

24

Common Cryptographic Algorithms Revision D.1 09/13/2000

Enhanced CMEA is based on the basic CMEA construct for ease of
implementation. It uses a modified CMEA which is passed keying
information. =~ The ECMEA encryption algorithm also uses a
transformation and its inverse which are called before and after the
CMEA block.

For each message encrypted or decrypted with ECMEA, offsets are
calculated and then used to permute the tbox values used in CMEA and
the transformations. ECMEA uses two offsets which are calculated as
follows:

offset12 = ((offset_key[1.0]+1)*(CS[1,0] + 1) mod 65537)
XOR offset_key[3,2]

offset] = (offset12 >> 8) mod 256
offset2 = offset] XOR MAX(offset12 mod 256, 1)

where XOR stands for logical bitwise exclusive or, offset key[i,j]
means octets i and j of offset key concatenated to form a 16-bit
quantity with the second octet as the least significant, and CS denotes
the 16 bits of cryptosynchronizing information for the message.

CMEA uses one offset while the transformation and its inverse use two
offsets. The transformations are non-self-inverting and so the entire
algorithm is non-self-inverting. For the inverse ECMEA algorithm, the
order of passing offsets to the transformations is reversed. ECMEA is

configured as shown in Exhibit 2-27

Exhibit 2-27 ECMEA Structure

Mobile Station
encrypt (decrypt)

Input

v

Base Station
encrypt (decrypt)

Input

v

Transformation
offset 1, offset 2

Transformation
offset 2, offset 1

v

v

CMEA
offset1 (offset2)

CMEA
offset2 (offset1)

v

v

Inverse
Transformation
offset 2, offset 1

Inverse
Transformation
offset 1, offset 2

v

Output

v

Output

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
57

® N O O b~ W N =

09/13/2000 Common Cryptographic Algorithms Revision D.1

The mobile station and the base station implement the same basic
algorithm with the only change being the offsets that are used in the
transformation, in CMEA and in the inverse transformation. For
example, offsets 1 and 2 (in that order) are used in the first
transformation in the mobile station while the same offsets in the
reverse order are passed to the first transformation in the base station.
The inverse transformation always uses the offsets in the reverse order.

The transformation and its inverse are given in Exhibit 2-28

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
58

© o N O O b~ WN

g o o a B B B B B B B DB DB DWW WWWWWWWWNDNDNDDNDNDNDNDRNDNDN= 22 a3 A A A A
W N =2 O © © N O G & WN =2 O © ®NO G B WN -2 0 © 0 ~NO O B WN =2 O © 0N O O b WN = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

Exhibit 2-28 ECMEA Transformation and its Inverse

/* transform and inv_ transform have the same header as ECMEA (see
Exhibit 2-30) */

void transform(unsigned char *msg buf, const int octet count,
unsigned char offseta, const unsigned char offsetb,
const unsigned char *key)

unsigned char k, z;
int msg_ index;

for (msg index = 0; msg_index < octet count; msg index++)

{

/* offseta rotation and involutary lookup of present octet */

if (msg_index > 0)
offseta = (offseta >> 1) | (offseta << 7);
msg_buf [msg_index] = offsetb *
etbox ((unsigned char) (msg buf [msg index] * offseta), key);

/* bit-trade between present octet and the one below */

if (msg _index > 0)

{
k = msg buf[msg index - 1] * msg buf [msg index] ;
k &= etbox((unsigned char) (k * offseta), key);
msg_buf [msg_index - 1] %= k;
msg_buf [msg_index] *= k;

/* random octet permutation */
/* exchange previous octet with a random one below it */

if (msg _index > 1)

A

k = etbox((unsigned char) (msg buf [msg index] offseta),
key) ;

k = ((msg_index) * k) >> 8;

z = msg_buf [k];

msg buf [k] = msg buf[msg index - 1];

msg buf [msg index - 1] = z;

}

/* final octet permutation */
/* exchange last octet with a random one below it */

A

k etbox ((unsigned char) (0x37
k ((msg_index) * k) >> 8;

z = msg_buf [k];

msg buf [k] = msg buf[msg index - 1];
msg buf [msg index - 1] = z;

offseta), key);

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
59

© 0 N O O b~ WN =

a & B B B B B B B DB DB W WWWWWWWWWNNDNDNDNDNDNDNDNDNDNDN-=2 2 2 A A A A A
O © 0 N O O b WN =2 O © 0N O & WN =2 O O© ©®~N O g & WN =2 O © 0N O b WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

}

/* final involution and XORing */

k = etbox(msg buf [0], key);
for (msg index = 1; msg_index < octet count; msg index++)

msg buf [msg index] = etbox(msg buf [msg index], key);
k “= msg buf [msg index] ;

}

msg_buf [0] = k;
for (msg index = 1; msg_index < octet count; msg index++)
msg_buf [msg_index] *= k ;

/* Inverse Transformation */

void inv_transform(unsigned char *msg buf, const int octet count,

unsigned char offsgta, const unsigned char offsetb,
const unsigned char *key)

unsigned char k, z;
int msg_ index;

/* initial offseta rotation */

k = (octet count - 1) & 0x07;

offseta = (offseta >> k) | (offseta << (8 - k));
/* inverse of final involution and XORing */

for (msg index = 1; msg_index < octet count; msg index++)
msg_buf [msg_index] “= msg buf [0];

for (msg index = 1; msg_index < octet count; msg index++)

{

A

msg buf [0] "= msg buf [msg_ index];
msg buf [msg index] = etbox(msg buf [msg index], key);

msg_buf [0] = etbox(msg buf[0], key);

/* initial octet permutation */
/* exchange last octet with a random one below it */

A

k = etbox((unsigned char) (0x37 offseta), key);
k = ((octet_count) * k) >> 8;

z = msg_buf [k];

msg_buf [k] = msg buf[octet count - 1];

msg_buf [octet count - 1] = z;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
60

© o N O O B WN =

W W W W NN N DNDNDNDNDNDNDN-=S 22 2 2 a3 QA A A
W N = O © 0 N O O & W N = O © 0N O O b WN = O

Common Cryptographic Algorithms Revision D.1

for (msg index = octet count - 1; msg index >= 0; msg index--)

{

/* random octet permutation */
/* exchange previous octet with a random one below it */

if (msg _index > 1)

{

A

k = etbox((unsigned char) (msg buf [msg index] offseta),
key) ;

k = ((msg_index) * k) >> 8;

z = msg_buf [k];

msg buf [k] = msg buf[msg index - 1];

msg buf [msg index - 1] = z;

/* bit-trade between present octet and the one below */

if (msg _index > 0)

{

A

k = msg buf [msg index - 1] msg buf [msg index];
k &= etbox((unsigned char) (k * offseta), key);
msg_buf [msg_index - 1] *= k;

msg_buf [msg_index] *= k;

}

/* involutary lookup of present octet and offset rotation */

msg_buf [msg_index] = offseta

etbox ((unsigned char) (msg buf [msg index] * offsetb), key);

offseta = (offseta << 1) | (offseta >> 7);

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
61

09/13/2000

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

N o g b

©

10
1"
12

13
14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

09/13/2000

Common Cryptographic Algorithms Revision D.1

xhibit 2-30| gives the ECMEA algorithm for the mobile station. Each
message to which ECMEA is applied must be a multiple of 8 bits in
length.

The base station algorithm is the same as the mobile station algorithm
except for the two calls to the transformations and the offset used for
CMEA. C code for the base station procedure is identical to that in
except the first transformation call is changed to

transform(msg buf, octet count,
offset2, offsetl, key);

the offsets used for CMEA are reversed (i.e., the decryption and
encryption offsets are the opposite of those used by the mobile station)
and the final inverse transformation call is changed to

inv_transform(msg buf, octet count,
offsetl, offset2, key);

Exhibit 2-29 ECMEA Algorithm Header

void ECMEA_ Secret Generation(void) ;

void Non Financial Seed Key Generation(void) ;

void Non Financial Secret Generation(void) ;

void ECMEA (unsigned char *msg_buf,

const
const
const
const

int octet count,
unsigned char sync([2],
unsigned int decrypt,
unsigned int data type);

#ifndef ECMEA SOURCE FILE

extern
unsigned char
extern
unsigned char
extern
unsigned char
extern
unsigned char
extern
unsigned char
#endif

ecmea_key[8];
ecmea_nf key[8];
offset key[4];
offset nf keyl4];

seed nf key[5];

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

62

© © N o O b~ w

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Common Cryptographic Algorithms Revision D.1

Exhibit 2-30 ECMEA Encryption/Decryption Algorithm for the

Mobile Station

#define ECMEA SOURCE FILE
#include "cavei.h" /* see [Exhibit 2—3|*/

#include "ecmea.h" /* see [Exhibit 2-29| */

#define MOBILE 1 /* set to 0 for base station algorithm */

void ECMEA (unsigned char *msg buf, const int octet count,
const unsigned char sync([2],
const unsigned int decrypt,
const unsigned int data_ type)

unsigned char k, z, offsetl, offset2, offsetc;
unsigned long x1, X2, s;

int msg index;

unsigned char *key, *offset;

/* select key and offset key */
if (data_type)
{

key = ecmea nf key;

offset = offset nf key;

}

else

{
key = ecmea key;
offset = offset key;

}

/* calculate offsets */
/* offsetl2 =
((offset[1,0]+1)*(CS+1) mod 65537) “offset[3,2] mod 65536 */

x1 = ((unsigned long)offset[1l] << 8) + (unsigned long)offset[0];
x2 = ((unsigned long)offset[3] << 8) + (unsigned long)offset[2];

s = ((unsigned long)sync([l] << 8) + (unsigned long)sync[0];

/* x1 = (((x1 + 1) * (s + 1)) % 65537) * x2; in two steps to
prevent overflow */

x1l = (x1 * (s + 1)) % 65537;

x1l = ((x1 + s + 1) % 65537) x2;

offsetl = (unsigned char) (x1 >> 8);

offset2 = (unsigned char) (offsetl *

if (offset2 == offsetl)

A

offset2 "= 1;

A

x1) ;

#if MOBILE

if (decrypt)
offsetc = offset2;
else

offsetc offsetl;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
63

© 0 N O O b~ WN =

A B B B B DB DB DB W WWWWWWWWWNDNDNDNDNDNDNDNDNDN=S 2 a2 A A A A
N o O b WN =2 O © 0N OO B~ WON -2 O O 00 NOoOOaRr WN =22 O © 0o N O O b~ WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

#else
if (decrypt)
offsetc = offsetl;
else
offsetc = offset2;
#endif

/* initial transformation */
#if MOBILE

transform(msg_buf, octet count, offsetl, offset2, key);
#else
transform(msg_buf, octet count, offset2, offsetl, key);
#endif

/* CMEA */

/* first manipulation (inverse of third) */

z = 0;

for (msg index = 0; msg_index < octet count; msg index++)

{
k = etbox((unsigned char) (z * offsetc), key);
msg buf [msg index] += k;
z = msg_buf [msg index];

}

/* second manipulation (self-inverse) */

for (msg index = 0; msg_index < octet count - 1; msg index += 2)
msg_buf [msg_index] “= msg buf [msg_index + 1];

/* third manipulation (inverse of first) */

z = 0;

for (msg index = 0; msg_index < octet count; msg index++)
k = etbox((unsigned char) (z * offsetc), key);

z = msg_buf [msg index];
msg buf [msg index] -= k;

/* final inverse transformation */

#if MOBILE

inv_transform(msg buf, octet count, offset2, offsetl, key);

#else

inv_transform(msg buf, octet count, offsetl, offset2, key);

#endif

}

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
64

N o g b~ W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Common Cryptographic Algorithms Revision D.1

09/13/2000

2.7. Wireless Residential Extension Procedures

This section describes detailed cryptographic procedures for wireless
mobile telecommunications systems offering auxiliary services. These
procedures are used to perform the security services of Authorization
and Call Routing Equipment (ACRE), Personal Base (PB) and Mobile

Station (MS) authentication.

The ANSI C header file for Wireless

Residential Extension Procedures is given in

Exhibit 2-31 WRE Header

void WIKEY Generation(const unsigned char MANUFACT KEY[16],
const unsigned char PBID([4]) ;

void WIKEY Update (const unsigned char
const unsigned char

unsigned long WI Auth Signature (const
const
const
ACRE PHONE NUMBER [3]) ;

RANDWIKEY [7],
PBID[4]) ;

unsigned char
unsigned char
unsigned char

RAND CHALLENGE [4],
PBID[4],

unsigned long WRE Auth Signature (const unsigned char RAND WRE[3],
const unsigned char PBID([4],
const unsigned char ESN([4]) ;

#ifndef WRE SOURCE FILE
extern
unsigned char
extern
unsigned char
extern
unsigned char
#endif

WIKEY [8];
WIKEY NEW[8];

WRE_KEY [8] ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

65

10

11

12

13
14
15

16
17

18
19
20
21
22
23

09/13/2000

Common Cryptographic Algorithms Revision D.1

2.7.1. WIKEY Generation

Procedure name:

WIKEY Generation

Inputs from calling process:
MANUFACT KEY 122 bits
PBID 30 bits
Inputs from internal stored data:

AAV 8 bits

Outputs to calling process:

None.

Outputs to internal stored data:

WIKEY 64 bits

This procedure is used to calculate the WIKEY value generated during
the manufacturing process. This WIKEY value is stored in semi-
permanent memory of the PB.

The initial loading of CAVE for calculation of WIKEY is given in
xhibit 2-32

MANUFACT KEY is a 122-bit value that is chosen by the
manufacturer. This value is the same for all of the manufacturer's PBs.
PB manufactures must provide this number to each ACRE manufacture
so that the ACREs can calculate the correct WIKEY values. The 32
MSBs of MANUFACT KEY must not be all zeroes. There must be at
least 40 zeroes and 40 ones in MANUFACT KEY.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

66

Common Cryptographic Algorithms Revision D.1

Exhibit 2-32 CAVE Initial Loading for WIKEY Generation

CAVE Item Source Identifier Size (Bits)
LFSR bits 121-90 (32 MSBs) of 32
MANUFACT KEY
Reg [0-7] bits 89-26 of 64
MANUFACT KEY
Reg [8] AAV 8
Reg [9-11] bits 25-2 of 24
MANUFACT KEY
Reg [12] 2 MSBs bits 1-0 (2 LSBs) of 2
MANUFACT KEY
Reg [12] 6 LSBs 6 MSBs of PBID 6
Reg [13-15] 24 LSBs of PBID 24
2
3 CAVE is run for eight rounds. The 64-bit result is WIKEY.
4 33" shows the process in graphical form, while the ANSI C for the
5 process is shown in Exhibit 2-34
6 The 64-bit WIKEY result is obtained from the final value of CAVE
7 registers ROO through R15. The first 8 CAVE registers are XORed
8 with the last 8 CAVE registers to produce the value for WIKEY.
9 Exhibit 2-33 Generation of WIKEY
MANUFACT-
_KEY
Initialize LFSR,
registerS, offsets Quantities passed to CAVE
PBID —» process at each round:
* contents of LFSR
[T | * values of offsets
¢ ¢ ¢ * contents of 16 registers
Internal basic
round of CAVE
] WIKEY
I *_4 Generation WIKEY
post- [™
T | process 64 bits
I

10 8 rounds

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
67

© o N O O b~ WN

W W W W W N NN DNDNDNDNDNDNDDN=S = a2 A a A A A
A W N =2 O © ©® N O g & WN = O © 0 ~NO O b WN = O

09/13/2000

Common Cryptographic Algorithms Revision D.1

Exhibit 2-34 Code for WIKEY Generation

#define WRE_SOURCE_FILE

#include
#include

unsigned
unsigned
unsigned

/* Note that MANUFACT KEY is left justified and PBID is right justified.
This means that the 6 LSBs of MANUFACT KEY and the 2 MSBs of PBID

"cavei.h"
"wre.h"

char
char
char

/* see [Exhibit 2—3|*/

/* see [Exhibit 2-31| */

WIKEY[8] ;
WIKEY NEW[8];
WRE_KEY [8] ;

must be set to 0 by the calling routine. */

void WIKEY Generation(const unsigned char MANUFACT KEY[16],

const unsigned char PBID[4])

{
int i,offset 1,offset 2;
for (1 = 0; 1 < 4; 1i++)

LFSRI[i] = MANUFACT_KEY[i];
for (1 = 0; 1 < 8; 1i++)

Register[i] = MANUFACT_KEY[i+4];
Register[8] = AAV;
for (1 = 0; 1 < 4; 1i++)

Register[i+9] = MANUFACT KEY [i+12];
Register[12] = Register[12] | PBID[0];
for (1 = 0; 1 < 3; 1i++)

Register[i+13] = PBID[i+1];
offset 1 = offset 2 = 128;

CAVE (8, &offset 1, &offset 2);
for (1 = 0; 1 < 8; i++)
WIKEY[i] = Register[i] ” Register[i+8];
}

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

68

10

11

12

13

14

15
16

17

18

19
20
21

22
23
24
25

Common Cryptog

raphic Algorithms Revision D.1

2.7.2. WIKEY Update Procedure

09/13/2000

Procedure name:

PBID

WIKEY Update

Inputs from calling process:

RANDWIKEY 56 bits

30 bits

Inputs from internal stored data:

WIKEY 64 bits
AAV 8 bits
Outputs to calling process:
None.
Outputs to internal stored data:
WIKEY NEW 64 bits

This procedure is used to calculate a new WIKEY value.

The initial loading of CAVE for calculation of WIKEY NEW is given

in Exhibit 2-35

Exhibit 2-35 CAVE Initial Loading for WIKEY Update

CAVE Item Source Identifier Size (Bits)
LFSR 32 LSB of RANDWIKEY 32
Reg [0-7] WIKEY 64
Reg [8] AAV 8
Reg [9-11] 24 MSB of RANDWIKEY 24
Reg [12] 2 MSBs 00 2
Reg [12] 6 LSBs 6 MSBs of PBID

Reg [13-15] 24 LSBs of PBID 24

CAVE is run for eight rounds. The 64-bit result is WIKEY NEW.

RT3 qshows the

the process 1s shown in Ex 1bit 2-37

process in graphical form, while the ANSI C for

The LFSR will initially be loaded with the 32 LSBs of RANDWIKEY.
This value will be XOR'd with the 32 most significant bits of WIKEY
XOR'd with the 32 least significant bits of WIKEY, then reloaded into
the LFSR. If the resulting bit pattern fills the LFSR with all zeroes, then

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

69

o O A~ W

09/13/2000

Common Cryptographic Algorithms Revision D.1

the LFSR will be reloaded with the 32 LSBs of RANDWIKEY to
prevent a trivial null result.

The 64-bit WIKEY NEW result is obtained from the final value of
CAVE registers R00 through R15. The first 8 CAVE registers are
XORed with the last 8 CAVE registers to produce the value for
WIKEY NEW.

Exhibit 2-36 Generation of WIKEY _NEW

RANDWIKEY I

WIKEY —»
PBID —®»

Initialize LFSR,
registers, Quantities passed to CAVE
offsets process at each round:
L e contents of LFSR
« values of offsets
* contents of 16 registers
Internal basic
round of
CAVE
L]
s WIKEY | \wikey NEW
l Update [=
' post- 64 bits
[process
[
8 rounds

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

70

Common Cryptographic Algorithms Revision D.1 09/13/2000

Exhibit 2-37 Code for WIKEY_NEW Generation

/* WIKEY Update has the same header as WIKEY Generation (see [Exhibit 2-

34"

*/

/* Note that PBID is right justified. This means that the 2 MSBs of PBID
must be set to 0 by the calling routine. */

void WIKEY Update (const unsigned char RANDWIKEY([7],
const unsigned char PBID[4])

{

int i,offset 1,0ff

for (i = 0; 1 < 4;
LFSR[i] = RANDW
if ((LFSRI[0] | LFS
for (1 = 0; 1 <

LFSR[i] = RA

for (i = 0; 1 < 8;

Register[i] = W

Register [8] = AAV;
for (1 = 0; 1 <

3;
Register [i+9] =
for (i = 0; 1 < 4;
Register[i+12]
offset 1 = offset
CAVE (8, &offset 1,
for (i = 0; 1 < 8;
WIKEY NEW[i] =

set 2;

i+4+4)

IKEY [1i+3] ©~ WIKEY[i] * WIKEY[i+4];

R[1] | LFSRI[2]
4; i++)

NDWIKEY [1i+3];
i+4+4)

IKEY[i];

i+4+4)
RANDWIKEY [i] ;
i+4+4)

= PBID[i];

2 = 128;
&offset_2);
i+4+4)

Register [i]

| LFSR([3]) == 0)

* Register[i+8];

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

71

09/13/2000 Common Cryptographic Algorithms Revision D.1

2.7.3. Wireline Interface Authentication Signature Calculation
Procedure

10
1"

12

13

14

15

16
17

18
19

20
21

22
23

24
25
26
27
28
29
30
31
32

Procedure name:

WI_ Auth_Signature

Inputs from calling process:

RAND CHALLENGE 32 bits
PBID 30 bits
ACRE_PHONE NUMBER 24 bits

Inputs from internal stored data:

WIKEY 64 bits
AAV 8 bits

Outputs to calling process:

AUTH_SIGNATURE 18 bits

Outputs to internal stored data:

None.

This procedure is used to calculate 18-bit signatures used for verifying
WIKEY values.

The initial loading of CAVE for calculation of wireline interface
authentication signatures is given in Exhibit 2-38

For authentication of an ACRE, RAND CHALLENGE is received
from the PB as RAND ACRE.

For authentication of a PB, RAND CHALLENGE is received from the
ACRE as RAND PB.

The ACRE PHONE NUMBER is 24 bits comprised of the least
significant 24 bits of the ACRE's directory number (4 bits per digit).
The digits 1 through 9 are represented by their 4-bit binary value
(0001b - 1001b), while the digit 0 is represented by 1010b. If the
phone number of the acre is less than 6 digits, then the digits are filled
on the left with zeros until 6 full digits are reached. Example: If the
acre's phone number is (987) 654-3210, ACRE_ PHONE NUMBER is
010101000011001000011010b. If the acre's phone number is 8695,
ACRE PHONE NUMBER is 000000001000011010010101b.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
72

10
11
12

13
14
15
16
17
18

Common Cryptographic Algorithms Revision D.1

Exhibit 2-38 CAVE Initial Loading for Wireline Interface
Authentication Signatures

09/13/2000

CAVE Item Source Identifier Size (Bits)
LFSR RAND_CHALLENGE 32
Reg [0-7] WIKEY 64
Reg [8] AAV 8
Reg [9-11] 24 LSBs of 24
ACRE PHONE NUMBER

Reg [12] 2 MSBs 00
Reg [12] 6 LSBs 6 MSBs of PBID
Reg [13-15] 24 LSBs of PBID 24

CAVE is run for eight rounds. 18-bit result is

AUTH_SIGNATURE. shows the process in graphical
form, while the ANSI C for the process is shown in

The LFSR will initially be loaded with RAND CHALLENGE. This
value will be XOR'd with the 32 most significant bits of WIKEY
XOR'd with the 32 least significant bits of WIKEY, then reloaded into
the LFSR. If the resulting bit pattern fills the LFSR with all zeroes, then
the LFSR will be reloaded with RAND CHALLENGE to prevent a
trivial null result.

The 18-bit authentication result AUTH SIGNATURE is obtained from
the final value of CAVE registers R00, RO1, R02, R13, R14, and R15.
The two most significant bits of AUTH_SIGNATURE are equal to the
two least significant bits of RO0 XOR R13. The next eight bits of
AUTH_SIGNATURE are equal to ROl XOR R14. Finally, the least
significant bits of AUTH_SIGNATURE are equal to R02 XOR R15.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

73

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-39 Calculation of AUTH_SIGNATURE

RAND-

_CHALLENGE
WIKEY — Initialize LFSR,
PBID — P registers,
ACRE_PHONE: offsets Quantities passed to CAVE
NUMBER T 1 process at each round:
- * contents of LFSR
* values of offsets
* contents of 16 registers
Internal basic
round of
CAVE
L] AUTH_SIGNATURE
T *_* post-process
| I
| AUTH_SIGNATURE
18 bits
8 rounds

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
74

Common Cryptographic Algorithms Revision D.1 09/13/2000

Exhibit 2-40 Code for calculation of AUTH_SIGNATURE

/* WI_Auth Signature has the same header as WIKEY Generation (see Exhibit 2-34) */

/* Note that PBID is right justified. This means that the 2 MSBs of PBID
must be set to 0 by the calling routine. */

unsigned long WI_Auth Signature(const unsigned char RAND CHALLENGE [4],
const unsigned char PBIDI[4],

© o N O O b~ WN

W W W W W N NN DNDNDNDNDNDNDDN=S = a2 A a A A A
A W N =2 O © ©® N O g & WN = O © 0 ~NO O b WN = O

const unsigned char ACRE_ PHONE NUMBER/[3])

int i,offset 1,offset 2;
unsigned long AUTH SIGNATURE;

for (1 = 0; 1 < 4; 1i++)
LFSRI[i] = RAND CHALLENGE [1] WIKEY [1]
if ((LFSR[0] | LFSR[1] | LFSR[2] | LFSR[3]) == 0)
for (1 = 0; 1 < 4; i++)
LFSRI[i] = RAND CHALLENGE [1];
for (1 = 0; 1 < 8; i++)
Register[i] = WIKEY[i];
Register[8] = AAV;
for (1 = 0; 1 < 3; 1i++)
Register[i+9] = ACRE_PHONE_NUMBER[i];
for (1 = 0; 1 < 4; 1i++)
Register[i+12] = PBIDI[i];
offset 1 = offset 2 = 128;
CAVE (8, &offset 1, &offset 2);
AUTH_SIGNATURE =

A A

(((unsigned long) (Register[0] * Register[13]) << 16)
Register[14]) << 8)

A

((unsigned long) (Register[1]
((unsigned long) (Register[2] * Register([15]))
& Ox3ffff;
return (AUTH_SIGNATURE) ;

WIKEY [i+4];

+
+

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

75

10
11

12

13

14

15

16
17

18
19

20
21

22

23
24
25

09/13/2000 Common Cryptographic Algorithms Revision D.1

2.7.4. Wireless Residential Extension Authentication Signature

Calculation P

rocedure

Procedure name:

WRE_ Auth Signature

Inputs from calling process:

RAND WRE 19 bits
ESN 32 bits
PBID 30 bits

Inputs from internal stored data:

WRE_KEY 64 bits
AAV 8 bits

Outputs to calling process:

AUTH_SIGNATURE 18 bits

Outputs to internal stored data:

None.

This procedure is used to calculate 18-bit signatures used for verifying
a mobile station.

The initial loading of CAVE for calculation of wireless residential
extension authentication signatures is given in [Exhibit 2-41

Exhibit 2-41 CAVE Initial Loading for Residential Wireless
Extension Authentication Signature

CAVE Item Source Identifier Size (Bits)
LFSR 19 MSBs RAND WRE 19
LFSR 13 LSBs 13 LSBs of PBID 13
Reg [0-7] WRE_KEY 64
Reg [8] AAV
Reg [9] 2 MSBs 00b 2
Reg [9] 6 LSBs 6 MSBs of PBID
Reg [10-11] bits 23-8 of PBID 16
Reg [12-15] ESN 32
CAVE is run for eight rounds. The 18-bit result is

AUTH_SIGNATURE. [Exhibit 2-42| shows the process in graphical
form, while the ANSI C for the process is shown in [Exhibit 2-43

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

76

N o g b~ W N =

10
1"
12
13

14

15

Common Cryptographic Algorithms Revision D.1 09/13/2000

The 19 MSBs of LFSR will initially be loaded with RAND WRE. The
13 LSBs of LFSR will initially be loaded with the 13 LSBs of PBID.
LFSR will be XOR'd with the 32 most significant bits of WRE KEY
XOR'd with the 32 least significant bits of WRE KEY, then reloaded
into the LFSR. If the resulting bit pattern fills the LFSR with all zeroes,
then the 19 MSBs of LFSR will be reloaded with RAND WRE, and the
13 LSBs of LFSR will be reloaded with the 13 LSBs of PBID.

The 18-bit authentication result AUTH SIGNATURE is obtained from
the final value of CAVE registers R00, RO1, R02, R13, R14, and R15.
The two most significant bits of AUTH_SIGNATURE are equal to the
two least significant bits of RO0 XOR R13. The next eight bits of
AUTH_SIGNATURE are equal to ROl XOR R14. Finally, the least
significant bits of AUTH_SIGNATURE are equal to R02 XOR R15.

Exhibit 2-42 Calculation of AUTH_SIGNATURE

RAND WRE —P
WRE_KEY —®
ESN —P

Initialize LFSR,
registers,
offsets Quantities passed to CAVE
process at each round:
e contents of LFSR
« values of offsets

Internal basic

* contents of 16 registers

round of
CAVE
_ AUTH_SIGNATURE
post-process
|
I |
AUTH_SIGNATURE
8 rounds 18 bits

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

77

© o N O O b~ WN

A A B B DB DWW W W W W WWWWNDNDNDNDNDNDNDNDNDNDN= 2 A a A A
a A WO N =2 O © ® N O O B WN =2 O © 0 ~NO O & WN =~ O © 0N O O b WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-43 Code for calculation of AUTH_SIGNATURE

/* WRE Auth Signature has the same header as WIKEY Generation (see
Exhibit 2-34) */

/* Note that RAND WRE is left justified and PBID is right justified.
This means that the 5 LSBs of RAND WRE and the 2 MSBs of PBID
must be set to 0 by the calling routine. */

unsigned long WRE Auth Signature (const unsigned char RAND WRE[3],
const unsigned char PBIDI[4],
const unsigned char ESN[4])

int i,offset 1,offset 2;
unsigned long AUTH SIGNATURE;

for (1 = 0; 1 < 3; 1i++)
LFSR[i] = RAND WRE[i];
LFSR[2] = LFSR[2] | (PBID[2] & Ox1F);
LFSR[3] = PBID[3];
for (1 = 0; 1 < 4; i++)
LFSR[i] = LFSR[i] * WRE KEY[i] WRE_KEY [i+4];
if ((LFSR[0] | LFSR[1] | LFSR[2] | LFSR[3]) == 0)

A

for (1 = 0; 1 < 3; 1i++)
LFSR[i] = RAND WRE[i];
LFSR[2] = LFSR[2] | (PBID[2] & Ox1F);
LFSR([3] = PBIDI[3];
}
for (1 = 0; 1 < 8; i++)
Register[i] = WRE KEY[i];
Register[8] = AAV;
for (1 = 0; 1 < 3; 1i++)
Register[i+9] = PBIDI[i];
for (1 = 0; 1 < 4; 1i++)
Register[i+12] = ESNI[i];
offset 1 = offset 2 = 128;
CAVE (8, &offset 1, &offset 2);
AUTH_SIGNATURE =
(((unsigned long) (Register [0] Register[13]) << 16) +
((unsigned long) (Register[1] * Register([14]) << 8) +
((unsigned long) (Register[2] * Register([15])))
& Ox3ffff;
return (AUTH_SIGNATURE) ;

A

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
78

© o N O O

10
11
12
13

14
15
16
17
18

19
20

21
22

23

24

25

26

27
28

29

30
31

32
33
34

35
36

Common Cryptographic Algorithms Revision D.1 09/13/2000

2.8. Basic Wireless Data Encryption

Data encryption for wireless data services is provided by the ORYX
algorithm (as named by its developers) which is described in the
following.

e The DataKey Generation Procedure uses the A, B, and K registers
to generate a DataKey. SSD B provides the sole input to this
procedure. If the data encryptor has access to SSD_B, DataKey
may be generated locally. If not, DataKey is calculated elsewhere,
then sent to the encryptor.

In the network, this procedure executes at the initial serving system
if SSD B is shared or at the authentication center if SSD B is not
shared. DataKey may be precomputed when the mobile station
registers.

e The LTable Generation Procedure uses the K register to generate a
lookup table. RAND provides the sole input to this procedure. L is
generated locally. In the network, this procedure executes at the
initial serving system, and after intersystem handoff, it may execute
at subsequent serving systems.

e The Data Mask Procedure provides an encryption mask of the
length requested by the calling process. It uses four inputs:

1. DataKey from the DataKey Generation Procedure via the call-
ing process;

2. HOOK directly from the calling process;
3. len directly from the calling process; and

4. L as stored from the LTable Generation Procedure.
The encryption mask is generated locally.

ORYX uses 3 Galois shift registers: A, B, and K. ORYX also uses a
256-octet look up table L.

Register K is a 32-bit Galois shift register, with feedback polynomial

32 28 19 18 16 14
k(zy=z"+z"+z +z"+z +z
+2M+ 2+ 2+ Lz L

This is implemented by shifting the contents of K to the right and
XORing the bit shifted out of the right-most position into the bit
positions specified by the feedback polynomial.

Before stepping, a check is made to see if all of the bit positions in K
are zero. If they are, K is initialized with the hex constant 0x31415926.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
79

o g b~ w

10

1"

12
13
14

15

16
17

18
19

20
21

22

23
24

25
26

Common Cryptographic Algorithms Revision D.1

The feedback polynomial k(z) is primitive and has Peterson & Weldon
octal code 42003247143 1]

Registers A and B are 32 bit Galois shift registers, shifting to the left:
the leftmost bit is XORed into the bit positions specified by the
feedback polynomial. Register A sometimes steps with feedback
polynomial

32, 2, 23, 2, 16, 12, Il
a(z)=z"+z2 +z7"+z7"+z +z +z

+2+ 2+ + P+ A2+ 1
and sometimes with feedback polynomial

32, 27, 26, 25, 24, 23, 22, 17
a(2z2)=z"+7Z +z7 +z7 +z7 +Z7+7+z

+Zl3+zll+ZIO+Z9+Z8+Z7+ZZ+Z+1

The decision is based on the current high order bit of K. First K is
stepped. If the (new) high order bit of K is set, register A steps
according to polynomial a,(z); if the high order bit of K is clear, register
A steps according to polynomial a,(z).

Register B steps once if the next-to-high order bit of K is clear, or twice
if the next-to-high order bit of K is set, with feedback polynomial

b(z)=(z+1)(Z3l+220+215+25+z4+z3+1)
S AL A 0 6 IS 6 3L

This is also implemented with a left shift, XORing the leftmost bit into
the bit positions specified by the feedback polynomial.

Polynomials a,(z), a,(z), and the degree 31 factor of polynomial b(z)
are all primitive, with Peterson & Weldon octal codes 40460216667,
41760427607, and 20004100071, respectively.

xhibit 2-44| illustrates the operation of the three Galois shift registers
used in ORYX.

) Since each shift register always has its output connected to its
feedback gates, the most-significant bit is not required explicitly in the
accompanying C code, hence the leading 4 (octal) is omitted from the
representations of the polynomial within the C code.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
80

09/13/2000

Common Cryptographic Algorithms Revision D.1

Exhibit 2-44 Galois Shift Registers

M 0 0 0) 0 0 0 0 0 0 0 0)) 0) 0) 0 0 } } } 0 0 } } 0 0 0 } L

Jgsiboy

JaN3g
v < 0 0 > < U L } v €
| 0 0 0 | 0 0 0 0 0 0 0 0 L L 0 3 0 3 0 0 3 3 3 0 0 3 3 0 0 0 3 3
k]
g 43 1€ 0e 6C 8¢ 1z 74 574 4 € [44 %4 0c 6l 8l A 9l Gl vl €l 43 L oL 6 8 L 9 S 14 € 4 b 0

| D1 DL DL KDL D1 DL D D1 D1 D KDL DL KD KDL DL DL KDL KDL DL KDL DL DL D1 D D D1 D1 KDL DL KDL D
A|
1018169y)

1gsiboy

JON 319

ooy uyuUuUUUUUUUUU U U U
CoboboboOoOoOoOoOoOoToToTototototoTotoToToTobobobobobobobototon

—_—
r (03186 ANYV) @b soeqgpoey s19)si69y g pue v (4OX) "0 amsnjox3 L _

Jeysibalys

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

81

10

1"

12
13

14
15
16
17

18
19
20
21

22
23
24

25
26
27
28

29
30
31

32
33
34

35

36

09/13/2000

Common Cryptographic Algorithms Revision D.1

2.8.1. Data Encryption Key Generation Procedure

Procedure name:

DataKey Generation

Inputs from calling process:

None.

Inputs from internal stored data:

SSD B 64 bits

Outputs to calling process:

DataKey 32 bits

Outputs to internal stored data:

None.

This procedure generates DataKey, a key used by the Data Mask
procedure (see .

The calculation of DataKey depends only on SSD B, therefore
DataKey may be computed at the beginning of each call using the
current value of SSD_B, or it may be computed and saved when SSD is
updated. The value of DataKey shall not change during a call.

Here is how DataKey is formed from SSD B, using ORYX as a hash
function: First, register A is initialized with the first 32 bits of SSD B,
B is initialized with the remaining 32 bits of SSD B and K is initialized
with the XOR of A and B. Then K is stepped 256 times.

After the i-th step, for 0 <1 < 256, the i-th entry, L[i], in the look up
table is initialized with the most-significant octet of K. Then the
following three-step procedure is repeated 32 times:

1. ORYX is stepped by calling the keygen () procedure, producing
a key octet, which is temporarily stored in the variable temp.
Register A is modified by shifting its contents to the left by 9 bits
and adding the contents of temp.

2. ORYX is stepped, producing a key octet, which is temporarily
stored in the variable temp. Register B is modified by shifting its
contents to the left by 9 bits and adding the contents of temp.

3. ORYX is stepped, producing a key octet, which is temporarily
stored in the variable temp. The value of the variable temp is

used to modify K as described in Exhibit 2-45

The XOR of the final values of K, A, and B is stored in DataKey.

xhibit 2-45|describes the calculation in ANSI C.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

82

© 0 N O O b~ WN

4 a4 a3 a4 A A a4
w N O g~ W N = O

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Common Cryptographic Algorithms Revision D.1

09/13/2000

Exhibit 2-45 Header for Basic Data Encryption

unsigned long DataKey Generation(void) ;
void LTable Generation(const unsigned char []);

void Data Mask (const unsigned long ,
const unsigned long ,
const int ,
unsigned char []);

#ifndef ORYX SOURCE FILE
extern

unsigned char L[256];
extern

unsigned long DataKey;
#endif

Exhibit 2-46 DataKey Generation

#define ORYX SOURCE_FILE

#include "cavei.h" /* see [Exhibit 2—3|*/
#include "oryx.h" /* see Exhibit 2-45| */

#define high(x) (unsigned char) (0xffU& (x>>24))

/* leftmost octet */

#idefine FAl 000460216667 /* Peterson & Weldon prim 32 */
#define FA2 001760427607 /* Peterson & Weldon prim 32 */
#define FB 020014300113 /* P&W prim 31 020004100071 times z+1 */
##define FK 030634530010 /* reverse of P&W prim 32 042003247143
*/

static

unsigned long K; /* 32-bit K register */

static

unsigned long A, B; /* 32-bit LFSRs */

unsigned char L[256]; /* look up table */

unsigned long DataKey; /* data encryption key */

static

void kstep (void) ;

static

unsigned char keygen (void) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

83

09/13/2000 Common Cryptographic Algorithms Revision D.1

1 unsigned long DataKey Generation(void)

2 |

3 int i;

4 unsigned long temp;

5

6 A = 0;

7 for(i=0; i<4; i++)

8 A = (A<<8) + (unsigned long)SSD B[il];
9 B = 0;

10 for(i=4; 1<8; i++)

11 B = (B<<8) + (unsigned long)SSD BI[i];
12

13 K = A * B;

14 for (i=0; 1<256; i++)

15 {

16 kstep () ;

17 L[i] = high(K);

18 }

19 for(i=0; 1<32; 1i++)

20 {

21 temp = (unsigned long)keygen() ;

22 A = (A<<9) + temp;

23 temp = (unsigned long)keygen() ;

24 B = (B<<9) + temp;

25 temp = (unsigned long)keygen() ;

26 K = (Oxff00ffffu & K) + (temp << 16);
27 K &= Oxffff00ffUuU + (temp<<8);

28 }

29 return ((A * B * K) & Oxffffffff);

30 }

32 static
33 unsigned char keygen (void)

34 {

35 unsigned char x;

36 int 1, trips;

37

38 kstep () ;

39 /*

40 * if high bit of K set, use Al feedback
41 * otherwise use A2 feedback
42 */

43 if ((1UL<<31) & A)

44 {

45 A += A;

46 if ((1UL<<31) & K)

47 A = A ~ FAl;

48 else

49 A=A " FA2;

50 }

51 else

52 A += A;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
84

© 0 N O O b~ WN =

BABA W W W WWWWWWWNNDNDNDNDNDNDNDNDNDNDN=2 22 2 A A A A A
- O © ©® N O O A W N =2 O © ©® N O g & WN = O © 0 ~NO O b WN = O

}

/*
* step the K register
*/

Common Cryptographic Algorithms Revision D.1

/*
* if next-high bit of
* otherwise once
*/

if ((1UL<<30)

trips = 2;
else

trips = 1;
for(i=0; i<trips;

{

& K)

1++4)

if ((1UL<<31)

{

& B)

B
B

I+

= B;
B * FB;
else
B += B;

x = high(K)
x &= OxffU;
return Xx;

+ Llhigh(a)]

static
void kstep (void)

{

£(

K== 0x31415926;
f (K&l

i
i

{

0) K =
)

K

(K>>1) FK;

else

{

~
Il

(K>>1) ;

}
K &= OxEEEfFEEff;

K set,

+ Lhigh(B)];

step B twice

/* use only 8 bits */

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
85

10

11

12
13

14
15
16
17

18

19

20
21

22
23
24
25

26

09/13/2000 Common Cryptographic Algorithms Revision D.1

2.8.2. L-Table Generation Procedure

Procedure name:

LTable Generation

Inputs from calling process:

RAND 32 bits

Inputs from internal stored data:

None.

Outputs to calling process:

None.

Outputs to internal stored data:

L 256*8 bits

This procedure generates L, a table used in the Data Mask procedure

(see P.8.3).

The LTable Generation procedure shall be executed at the beginning of
each call, and may be executed after intersystem handoff, using the
value of RAND in effect at the start of the call. The value of L shall not
change during a call.

L is initialized as follows:
K is set equal to RAND.

The i-th cell in the L table, L[i], is initialized with the value i, for 0
<i<256.

Then the K register is stepped 256 times. After the i-th step, for 0
<1 < 256, the value stored in the cell whose index is the most
significant octet of K and the value stored in the i-th cell of the L
table are interchanged.

xhibit 2-47|describes the calculation in ANSI C.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
86

© o N O O b~ WN

N NN NNMDN 2 4 o o o a4 a4 o a
a B W N =2 O © N O g b WN = O

Common Cryptographic Algorithms Revision D.1

Exhibit 2-47 LTable Generation

09/13/2000

/* The header for LTable Generation is the same as for

DataKey Generation (see [Exhibit 2-46) .%/

void LTable Generation(const unsigned char RAND[4])

{

int i,3;
unsigned char tempc;

0:
i

I~

K =
for 0; 1<4; i++)

(K<<8) + (unsigned long)RANDI[i];
0; 1<256; 1i++)

] = (unsigned <char)i;

(
K =
for (1
L[i
/* use high octet of K to permute 0 through 255 */
for (i=0; i< 256; 1i++)
{

kstep () ;

J = high(K);

tempc = LI[i];

L[i] L[J];

L7l tempc;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

87

10

11

12

13

14

15
16
17

18

19
20

21
22
23

24
25

26
27

28
29
30

31

09/13/2000 Common Cryptographic Algorithms Revision D.1

2.8.3. Data Encryption Mask Generation Procedure

Procedure name:

Data Mask

Inputs from calling process:

DataKey 32 bits
HOOK 32 bits
len integer

Inputs from internal stored data:

L 256*8 bits

Outputs to calling process:

mask len*8 bits

Outputs to internal stored data:

None.

This procedure generates an encryption mask of length len*S.

Implementations using data encryption shall comply with the following
requirements. These requirements apply to all data encrypted during a
call.

The least-significant bits of HOOK shall change most frequently.

e A mask produced using a value of HOOK should be used to
encrypt only one set of data.

e A mask produced using a value of HOOK shall not be used to
encrypt data in more than one direction of transmission, nor shall it
be used to encrypt data on more than one logical channel.

The DataKey and the look up table L must be computed prior to
executing Data Mask.

The key octets in a frame mask are produced by initializing the registers
K, A, and B with values derived from DataKey and HOOK as follows.

1. Kis set equal to the current value of HOOK. IfK,, K,, K;, and K,

denote the four octets of K, the following assignments are made in
turn:

K, =L[K; +K,]
Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
88

Common Cryptographic Algorithms Revision D.1 09/13/2000

K, =L[K,; + K]
K; =L[K; + K]
Ky =L[K,]
where the additions K; + K, are performed modulo 256.
2. Kis stepped once, and A is set equal to DataKey XOR-ed with K.
3. Kis stepped again, and B is set equal to DataKey XOR-ed with K.
4. Kis stepped again, and K is set equal to DataKey XOR-ed with K.

With these values of A, B, and K, the ORYX key generator is stepped n

10

11

times, and the resulting key octets are the n octets of the frame mask.

xhibit 2-48|describes the calculation in ANSI C.

Exhibit 2-48 Data Encryption Mask Generation

/* Data_ Mask has the same header as DataKey Generation
(see Exhibit 2-46) */

void Data Mask (const unsigned long DataKey,
const unsigned long HOOK,
const int len,
unsigned char mask[])

E
int 1;
K = (unsigned long)L [HOOK&Oxff] ;
K += ((unsigned long)L[((HOOK>>8)+HOOK) &0xff])<<8;
K += ((unsigned long)L[((HOOK>>16)+HOOK) &0xff])<<16;
K += ((unsigned long)L[((HOOK>>24)+HOOK) &0xff])<<24;
kstep(); A = DataKey * K; /* kstep() is defined in [Exhibit 2-45] */
kstep(); B = DataKey ~ K;
kstep(); K = DataKey ~ K;

for(i=0; i<len; i++)
mask[i] = keygen(); /* keygen() is defined in [Exhibit 2-45] */

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
89

© o N O O

11
12
13
14
15
16
17
18

19
20
21

22
23
24
25

26

27
28
29
30
31

09/13/2000

Common Cryptographic Algorithms Revision D.1

2.9. Enhanced Voice and Data Privacy

This section defines key generation and encryption procedures for the
following TDMA content: voice, DTC and DCCH messages, and RLP
data.

There are three key generation procedures: DTC key schedule
generation, DCCH key schedule generation, and a procedure that each
of these call termed the SCEMA Secrets Generation. The DCCH key
schedule is based on a CMEA Key instance which is generated at
Registration and remains for the life of the Registration. The DTC key
is generated from the CMEA Key on a per call basis.

The encryption procedures contained herein are grouped into three
levels, where the higher level procedures typically call procedures from
a lower level. Level 1 has one member: the SCEMA encryption
algorithm. Level 2 contains three procedures: a Long Block Encryptor
for blocks of 48 bits, a Short Block Encryptor for blocks less than
48 bits, and a KSG used in voice and message encryption. Level 3
contains voice, message, and RLP data encryption procedures which
interface directly to TIA/EIA-136-510.

CAVE algorithm code used in this section but defined external to it
comprises CAVE header files, "cave.h" (see Exhibit 2-2) and "cavei.h"
(see Exhibit 2-3), and CAVE source code (see Exhibit 2-4).

Throughout this section, the source code exhibits will be tagged with
file names. While these names are arbitrary, they serve as a visual aid to
the reader to flag a source code file and differentiate it from header
files.

2.9.1. SCEMA Key Generation Code

This section describes the procedures used for generating secret key
schedules for use in Enhanced Privacy and Encryption (EPE). Separate
schedules are generated for the TDMA DTC (Digital Traffic Channel)
and the DCCH (Digital Control Channel).

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

90

10

11

12
13

14

15
16
17
18
19
20
21
22

23
24

25
26
27
28
29

30

Common Cryptographic Algorithms Revision D.1 09/13/2000

2.9.1.1. DTC Key Generation

Procedure name:

DTC Key Generation

Inputs from calling process:

None.

Inputs from internal stored data:

CMEA Key (implicitly)

Outputs to calling process:

None.

Outputs to internal stored data:

dtcScheds|] DTC key schedule structure

This procedure creates an array of DTC key schedule structures.
Currently, the array contains a single element but allows the option to
be extended in the future to accommodate multiple key schedules of
different strengths. Each array element is a structure containing
*scemaKey, *obox, *offKey, and neededLength The first three
elements are pointers to keys (cryptovariables). The fourth, called

neededLength, generally corresponds to the true entropy of the key, and
is set in "scema.h" (see Exhibit 2-53).

dtcScheds[0] is generated from the CMEA Key. In TIA/EIA-136-510,
this 45-octet schedule is termed DTCKey. These 45 octets comprise

dtcScemaKeyCK1 8 octets
dtcOboxCK1 32 octets
dtcOffKeyAuxCK1 4 octets
NeededLengthCK1 1 octet

The suffix “CK1” denotes CaveKeyl.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
91

© o N O O b~ WN

A A B B B B BB BB W W WWWWWWWWNDNDNDNDNDNDNDNDNDN=S 2 a2 a A
© 0 N O O B WON -2 O © 00N OO r WN =2 O © 0 N OGO B~ WN-=2 O O© © N O O s~ wWN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-49 SCEMA DTC Key Generation

/* SCEMA DTC Key Generation "dtcKeyGen.c" */

#include "scema.h" /* see Exhibit 2—53|*/

/*
dtcScheds [0] accesses DTC CaveKeyl schedule.
*/

unsigned char dtcScemaKeyCKl [ScemaKeyLengthCK1] ;
unsigned int dtcOboxCK1 [16] ;
unsigned int dtcOffKeyAuxCK1 [2] ;

keySched dtcScheds[] = {
{dtcScemaKeyCK1l, dtcOboxCKl, dtcOffKeyAuxCKl, NeededLengthCK1},

}i

void DTC_Key Generation(void)

SCEMA_ Secret Generation (dtcScheds) ;

}
/*

Note: If a key schedule of a different strength is required in the
future,
the following can serve as an example:

/.
dtcScheds [0] will access DTC CaveKeyl schedule.
dtcScheds[1] will access DTC TBD Key2 schedule.

-/

unsigned char dtcScemaKeyCK1l [ScemaKeyLengthCK1] ;
unsigned int dtcOboxCK1 [16] ;
unsigned int dtcOffKeyAuxCK1 [2] ;

unsigned char dtcScemaKeyTbdK2 [ScemaKeyLengthTbdK2] ;
unsigned int dtcOboxTbdK2 [16] ;
unsigned int dtcOffKeyAuxTbdK2 [2] ;

keySched dtcScheds[] = {
{dtcScemaKeyCK1l, dtcOboxCKl, dtcOffKeyAuxCKl, NeededLengthCK1},
{dtcScemaKeydeKZ, dtcOboxTbdK2, dtcOffKeyAuxTbdK2,
NeededLengthTbdK2 }
}i
*/

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
92

10

1"

12
13
14

15
16
17
18
19
20
21
22

23
24

25
26
27
28
29

30

Common Cryptographic Algorithms Revision D.1 09/13/2000

2.9.1.2. DCCH Key Generation

Procedure name:

DCCH_Key Generation

Inputs from calling process:

None.

Inputs from internal stored data:

CMEA Key (implicitly)

Outputs to calling process:

None.

Outputs to internal stored data:

dcchScheds|] DCCH key schedule structure

This procedure creates an array of DCCH key schedule structures.
Currently, the array contains a single element but allows the option to
be extended in the future to accommodate multiple key schedules of
different strengths. Each array element is a structure containing
*scemaKey, *obox, *offKey, and neededLength The first three
elements are pointers to keys (cryptovariables). The fourth, called

neededLength, generally corresponds to the true entropy of the key, and
is set in "scema.h" (see Exhibit 2-53).

dcchScheds[0] is generated from the CMEA Key. In TIA/EIA-136-510,
this 45-octet schedule is termed DCCHKey. These 45 octets comprise

dcchScemaKeyCK1 8 octets
dechOboxCK1 32 octets
dcchOffKeyAuxCK1 4 octets
NeededLengthCK1 1 octet

The suffix “CK1” denotes CaveKeyl.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
93

© 0 N O O b~ WN

W N N N DN DN DN DNDNDNDDND =2 =2 a2 a A a A
O © © N O O B WN =2 O © 0N O g & W N = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-50 SCEMA DCCH Key Generation

/* SCEMA DCCH Key Generation "dcchKeyGen.c" */

#include "scema.h" /* see [Exhibit 2-53| */

/*
dcchScheds [0] accesses DCCH CaveKeyl schedule.
*/

unsigned char dcchScemaKeyCK1 [ScemaKeyLengthCK1] ;
unsigned int dcchOboxCK1 [16] ;
unsigned int dcchOffKeyAuxCK1 [2] ;

keySched dcchScheds[] = {
{dcchScemaKeyCK1l, dcchOboxCK1l, dcchOffKeyAuxCKl, NeededLengthCK1},

}i

void DCCH Key Generation (void)

{
}

SCEMA_ Secret Generation (dcchScheds) ;

/*

Note: If a key schedule of a different strength is required in the
future,

see the example in dtcKeyGen.c.

*/

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
94

10

11

12
13
14

15

16
17
18
19
20

21
22
23

24
25

26
27

28

29
30
31
32
33

34
35

36

37

38

Common Cryptographic Algorithms Revision D.1 09/13/2000

2.9.1.3. SCEMA Secret Generation

Procedure name:

SCEMA _ Secret_Generation

Inputs from calling process:

None.

Inputs from internal stored data:

CMEAKEY([0-7] 64 bits

Outputs to calling process:

None.

Outputs to internal stored data:

SCEMA KEY [0-7] 64 bits
oboxSchedFin[0-15] 16 words (256 bits)
offKeyAuxFin[0-1] 2 words (32 bits)

The CMEA Encryption Key and VPM Generation Procedure, defined
in section 2.5.1, is used to generate a CMEA key on a per-call basis.
SCEMA requires additional secret values to be generated on a per-call
or per-registration basis. This procedure accomplishes this by running
the CAVE algorithm initialized by the original CMEA key (64 bits).

« First, the LFSR will be loaded with the 32 MSBs of the CMEA
key. If these MSBs are all zero, then a constant, 0x31415926,
will be loaded instead.

* Second, registers RO0 through R0O7 will be loaded with the
CMEA key.

+ Third, registers RO8 through R15 will be loaded with the one’s-
complement of the CMEA key.

* Fourth, the offset table pointers will be reset to all zeros.

» Fifth, the LFSR is loaded before all of the remaining iterations
with a “roll-over RAND” comprised of the contents of ROO,
RO1, R14, and R15 at the end of the previous iteration. If the
resulting bit pattern fills the LFSR with all zeros, then the LFSR
will be loaded with the constant, 0x31415926.

The SCEMA key octets are drawn as follows (assuming that none
equate to zero):

+ scema_key[0] = register[4] XOR register[8]; (iteration 2)
+ scema key[l] = register[5] XOR register[9]; (iteration 2)
+ scema_ key [2] = register[6] XOR register[10]; (iteration 2)

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
95

20

21

22

23

Common Cryptographic Algorithms Revision D.1

» scema key[3] = register[7] XOR register[11]; (iteration 2)
+ scema key[4] = register[4] XOR register[8]; (iteration 3)
+ scema key[5] = register[5] XOR register[9]; (iteration 3)
+ scema_key[6] = register[6] XOR register[10]; (iteration 3)

» scema key[7] = register[7] XOR register[11]; (iteration 3)

Note: If, during this process, any of the octets of SCEMA KEY as
defined above are zero, that octet is replaced by the next nonzero octet
generated. Additional iterations are performed as necessary to generate
eight nonzero octets for SCEMA KEY. Thus the output of the CAVE
iterations can be viewed as SCEMA KEY candidates which are then
screened to yield the actual SCEMA KEY.

The Obox table comprises 16 16-bit words. Its values are drawn in a
similar manner with the following exceptions: First, the LSB and MSB
octets of the words are filled in succession. Second, a different screen is
used here which rejects those Obox table candidates where the 4 LSBs
of the sum of the table values and its index equals zero.

Finally, the two auxiliary offset keys are derived as follows via a single
CAVE iteration:

+ offKeyAuxFin[0] (lower octet) = register[4] XOR register[8]
+ offKeyAuxFin[0] (upper octet) = register[5] XOR register[9]
+ offKeyAuxFin[1] (lower octet) = register[6] XOR register[10]
+ offKeyAuxFin[1] (upper octet) = register[7] XOR register[11]

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
96

Common Cryptographic Algorithms Revision D.1 09/13/2000

Exhibit 2-51 Generation of SCEMA Secrets

LFSR loaded with CMEA key (32 MSBs

key:

'

64-bit CMEA key
64-bit ones complement
of CMEA key

Notes:

Registers RO0 thru
R15 and offsets

are not re-initialized
for CAVE iterations > 1

_
CAVE #1
8 rounds
[32-bit rollover RAND
¢ (ROO, RO1, R14, R15)
Key Candidates
CAVE (R0O4-R07 XOR SCEMA Key
4 rounds R08-R11)
(Repeatas | SCREEN 1 —p
necessary)
32-bit rollover RAND
(ROO, RO1, R14, R15)
Key Candidates
CAVE (R04-R07 XOR Obox Table
4 rounds R08-R11)
(Repeatas | SCREEN 2 —p
necessary)
32-bit rollover RAND
(ROO, RO1, R14, R15)
CAVE ‘ » Auxiliary Offset Keys
4 rounds (RO4—R07 XOR R08-R11)

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

97

© o N O O b~ WN

a g o o0 o a B B B B B B B DB BB W W W WWWWWWWNDNDNDNDNDNDNDNDNDN=S 2 A a A
a & O N =2 O © N O O & WN = O © 0N O O & WN =~ O © © N O O & WN =2 O O© 0N O O & WN = O

09/13/2000

/* SCEMA

Common Cryptographic Algorithms Revision D.1

Exhibit 2-52 SCEMA Secret Generation

Financial Secret Generation has the same header as SCEMA (see

Exhibit 2-53) */

/* SCEMA Secret Generation "scemaKeyGen.c */

#include
#include

"cavei.h" /* see Exhibit 2—3|*/

"scema.h" /* see Exhibit 2-53|*/

/* CAVE-related code */

void roll LFSR_SCEMA (void)

{

LFSR_A = Register[0];

LFSR B
LFSR_C
LFSR D

Register|[1];
Register([14];
Register[15]

’

if ((LFSR A | LFSR B | LFSR C | LFSR D) == 0)

{

LFSR_A
LFSR B

0x31;
0x41;

LFSR_C = 0x59;

LFSR D

0x26;

void SCEMA Secret Generation (keySched *schedPtr)

{

int i

,Jj,offset 1,o0ffset 2;

/* iteration 1, first pass through CAVE */

for (i = 0; i < 4; i++)

LFSR[i] = cmeakey[i+4];
if ((LFSR A | LFSR B | LFSR C | LFSR D) == 0)
{

LFSR_A = 0x31;
LFSR B = 0x41;

LFSR C = 0x59;
LFSR D = 0x26;
}
for (1 = 0; 1 < 8; 1i++)
Register[i] = cmeakey[i];
for (1 = 8; i < 16; i++)
Register[i] = ~cmeakey[i-8];
offset 1 = 0x0;

offset 2 = 0x0;

CAVE (8, &offset 1, &offset 2);

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
98

© 0 N O O b~ WN =

1"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Common Cryptographic Algorithms Revision D.1 09/13/2000

/* Generation of SCEMA KEY */

i=20; 3 = 4;
while (i < ScemaKeyLengthCK1)
{
/* see if new key material needs to be generated */
if(j == 4)
{
j=0;
roll LFSR_SCEMA() ;
CAVE (4, &offset 1, &offset 2);

}

schedPtr->scemaKey[i] = Register[j+4]
J++;

A

Register[j+8];

/* advance to next octet of SCEMA KEY if not zero; otherwise
generate another value */

if (schedPtr->scemaKey[i] != 0)
14+;

}

/* Generation of SCEMA Obox Table */

i=20; 3 = 4;
while (i < 16)
{
/* see if new key material needs to be generated */
if(j == 4)
{
j = 0;
roll LFSR_SCEMA() ;
CAVE (4, &offset 1, &offset 2);

}

schedPtr->obox[i] =
(int) (((Register[j+4] Register[j+8]) & OxFF) |
((Register[j+5] * Register[j+9]) << 8));

A

j o+= 2;

advance to next octet o ox Table if not zero; otherwise
/* ad t t tet of Ob Table if t th i
generate another value */

if (((schedPtr->obox[i] + 1) & OxOF) != 0)
14+;

}

/* Generation of SCEMA auxiliary offset keys */

roll LFSR_SCEMA() ;
CAVE (4, &offset 1, &offset 2);

schedPtr->o0ffKey[0] = (int) (((Register[4] * Register([8]) & OxFF) |
((Register[5] © Register[9]) << 8));

schedPtr->offKey[1] = (int) (((Register[6] * Register[10]) & OxFF) |
((Register[7] © Register[11]) << 8));

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
99

09/13/2000 Common Cryptographic Algorithms Revision D.1

2.9.2. SCEMA Header File

This section contains the header file used for all of the procedures in
EPE. Some of the procedures additionally use CAVE header files,

"cave.h" (see Exhibit 2-2) and "cavei.h" (see Exhibit 2-3).

Exhibit 2-53 SCEMA Header File

/* SCEMA Header File "scema.h" */
/* Key schedule architecture */

typedef struct key sched ({
unsigned char *scemaKey;
unsigned int *obox;
unsigned int *offKey;
unsigned char neededLength;
} keySched;

keySched dtcScheds|];

keySched dcchScheds[];

/* SCEMA procedure/function declarations */

void DTC_Key Generation(void) ;

void DCCH Key Generation(void) ;

void SCEMA Secret Generation(keySched *schedPtr) ;

void SCEMA (unsigned char *msg buf,
const int octet count,
const unsigned char *csync,
const unsigned char id,
const unsigned char idMask,
const unsigned int decrypt,
keySched *schedPtr) ;

void SCEMA KSG (unsigned char *keystreamBuf,
const unsigned int requestedStreamlen,
const unsigned char *inputBuf,
const unsigned int inputLen,
const unsigned char contentType,
keySched *schedPtr,
const unsigned int direction) ;

void Long Block Encryptor (unsigned char *contentBuf,
const unsigned char contentType,
const unsigned int decrypt,
keySched *schedPtr,
const unsigned int direction) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
100

Common Cryptographic Algorithms Revision D.1 09/13/2000

1 void Short Block Encryptor (unsigned char *contentBuf,
2 const unsigned int numBits,

3 const unsigned char contentType,

4 const unsigned char *entropy,

5 const unsigned int decrypt,

6 keySched *schedPtr,

7 const unsigned int direction) ;

8
9

void Enhanced Message Encryption(unsigned char *msgBuf,

10 const unsigned int numBits,

11 const unsigned int dcchDTC,

12 const unsigned char *rand,

13 const unsigned char msgType,

14 const unsigned int decrypt,

15 const unsigned int keyGenerator,
16 const unsigned int direction) ;

18 void Enhanced Voice Privacy(const unsigned int coderVer,

19 unsigned char *speechBufl,

20 const unsigned int numlaBits,

21 unsigned char *speechBufRem,

22 const unsigned int numRemBits,
23 const unsigned int decrypt,

24 const unsigned int keyGenerator,
25 const unsigned int direction) ;

26
27 void Enhanced Data Mask (unsigned char *mask,

28 const unsigned long HOOK,
29 const unsigned int len,
30 const unsigned int keyGenerator) ;

31
32 /* Encryption mode of SCEMA */

33

34 #define ENCRYPTING 0

35 #define DECRYPTING 1

36

37 /* Blocksize of plaintext (or ciphertext) */

38 #define ThreeOctets 3

39 #define SixOctets 6

40 #define EightOctets 8

41

42 /* Long Block Definitions

43 Note: The LongBlockArchitecture identity segment forces a one into bit 2
44 of SCEMA's cryptosync top octet to differentiate the Long Block
45 Encryptor from all other KSG-type encryptors.

46 */

47

48 #define LongBlkIdMask OxFF

49 #define LongBlockArchitecture 0x04

50

51 /* KSG, RLP, and Short Block Definitions

52 Note: The LongBlockArchitecture identity segment forces a zero into bit
53 2 of SCEMA's cryptosync top octet.

54 */

55 #define KSGIdMask 0x04

56 #define KSGArchitecture 0x00

57

58 /* Content Types */

59 #define VoiceContent 0x00

60 #define MessageContent 0x10

61 #define RlpContent 0x20

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
101

© o N O O B WN =

a o a &5 B B B B B B B DB DWW WWWW W WWWNNDNDNDNDNDNDNDNDNIDN= 2 A a3 A A A
N = ©O © ©® N O OO & W N =2 O © ® N O g & WN =2 O © 0 ~NO O B WN = O © 0N O GO b WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

/* Direction */
#define ForwardChannel 1
#define ReverseChannel 0

/* Instances */

#define Instancel 0x01
#define Instance2 0x02
#define Instance3 0x03

/* DCCH/DTC */
#define DCCH 0
#define DTC 1

/* Message Types */
#define TestMsgType 0x1A
#define TestMsgType2 0x09

/* Used in SCEMA transforms */
#define OFFSETA ((unsigned char) (*offInt & OxFF))
#define OFFSETB ((unsigned char) ((*offInt >> 8) & OxFF))

/* Miscellaneous */
#define MaxFrameOctetSize 35 /* 278 bits */
#define MaxMessageOctetSize 256 /* 2048 bits */

#define CAVEKeyl 1

#define CoderVersionZero 0

#define MAX(A,B) ((A) > (B) ? (A) (B))
#define MIN(A,B) ((A) < (B) ? (A) (B))

unsigned int offsetInt[2];

/* Key length determination and individual key schedule architectures
Note: NeededLength must be <= length of scemaKey to prevent

stbox () overflow, and should be >= the key schedule entropy.

Also, it must be even.

If a key schedule of a different strength is required in the future,
replicate the below with "CK1" replaced by the appropriate designator.
*/

/* CaveKeyl */

#define ScemaKeyLengthCKl 8

#define NeededLengthCKl 8

#1f NeededLengthCKl > ScemaKeyLengthCKl
#error NeededLengthCKl too large
#endif

#if NeededLengthCKl % 2
#terror NeededLengthCKl must be an even number
#endif

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
102

© oo N O O

11
12

13

14

15

16

17

18

19
20

21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36

37
38

Common Cryptographic Algorithms Revision D.1 09/13/2000

2.9.3. SCEMA Encryption/Decryption Procedure (Level 1)

Procedure name:

SCEMA

Inputs from calling process:

msg_buf[n] n*8 bits, n > 2
csync[0-1] 32

id 1 octet

idMask 1 octet

decrypt 1 bit

schedPtr pointer to key schedule

containing scemaKey, obox,
offKey, and neededLength

Inputs from internal stored data:

None.

Outputs to calling process:

msg_buf[n] n*8 bits

Outputs to internal stored data:

None.

This algorithm encrypts and decrypts messages that are of length n
octets, where n > 2.

The message is first stored in an n-octet buffer called msg buf [],
such that each octet is assigned to one “msg_buf []” value. The input
variable csync should have a unique value for each message that is
encrypted, with the portion that varies quickly in its lower 16 bits. The
same value of csync is used again for decryption.

The parameters id and idMask allow the internal copy of the top octet
of cryptosync to be forced to a given value. idMask defines which bits
are forced, and id defines the values of those bits. These inputs allow
differentiation of scema instances. In particular, the following are
differentiated: instances within a single procedure, and those with
different content, direction or architecture. By doing this, a class of
attacks is prevented that use recurring encryptor/decryptor outputs. One
well-known member of this class are replay attacks.

This SCEMA procedure uses the SCEMA variable-length session key
to produce enciphered messages via an enhanced CMEA algorithm.
The process of SCMEA key generation is described in

The decrypt variable shall be set to 0 for encryption, and to 1 for
decryption.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
103

© ® N o a »~A WO N -

10
1"

-
N

13

14

15

16

17

18

19
20

09/13/2000 Common Cryptographic Algorithms Revision D.1

SCEMA is given a pointer, schedPtr, to the desired key schedule
structure. The structure contains the following elements: *scemaKey,
*obox, *offKey, and neededLength The first three are pointers to keys
(cryptovariables). The fourth, neededLength, generally corresponds to
the true entropy of the key. A key generation mechanism may be
implemented such that it outputs the scemaKey into a constant buffer
size, independent of the true strength of the key. This parameter allows
the stbox() function’s iterations to track the true strength of the key,
which in turn allows for faster operation with lower strength keys.

The function stbox() is frequently used in SCEMA. For example, in
the case of an 8-octet SCEMA Key, stbox() is defined as:
stbox(z,k) = I(IAAATTILIIAAI(z+k0)XOR k1)+k2)XOR k3)+k4)XOR k5)+k6)XOR k7)-k6)XOR k5)-
k4)XOR k3)-k2)XOR k1)-k0 3
where “+” denotes modulo 256 addition,

“-” denotes modulo 256 subtraction,
“XOR” is the XOR function,
“z” is the function argument,
kO,. .,k7 are the eight octets of SCEMA key,

and I() is the outcome of the ibox 8-bit table look-up (see

xhibit 2-54).

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
104

Common Cryptographic Algorithms Revision D.1

Exhibit 2-54 SCEMA with subtending functions stbox and
SCEMA _transform

09/13/2000

/* SCEMA source including transforms and stbox "scema.c" */

#include "cave.h" /* see Exhibit 2-2 */
#include "scema.h" /* see Exhibit 2-53 */

/* Stbox function
Note: The SCEMA Key Length must be an even number of octets.
The "-1" in the first "while" statement prevents overflow if
ScemaKeyLength is accidentally odd.

*

/

unsigned char stbox(const unsigned char z,
const unsigned char *scema_key,
const unsigned char len)

unsigned char t = z;
int i = 0;

while(i < len - 1)

{

o
|

ibox[(t + scema key[i++]) & Oxff];
t = ibox[t * scema key[i++]];

--1;
while(i > 1)

{

t = ibox[(t - scema key[--i]) & Oxff];

t = ibox[t * scema key[--1il1];
}
t = (t - scema key[--1]) & Oxff;
return t;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
105

© 0 N O O b~ WN =

g o g a0 a B B B B B B B DD DWW WWW W WWWWNDNDNDDNDNDNDNDRNDNDN= 2 A a A A A A
A W N =2 O © ® N O G & WN =2 O © 0N O B WN =2 O © 0 ~NO OO B WN -~ O © 0N O O b WN = O

09/13/2000

Common Cryptographic Algorithms Revision D.1

/* Transformation */

void SCEMA transform(unsigned char *msg buf, const int octet count,

unsigned int *offInt, const unsigned char *key,
const unsigned int *obox, const unsigned char len)

unsigned char k, z;
int msg_ index;

for (msg index = 0; msg_index < octet count; msg index++)

/* offset generator cycle and involutary lookup of present octet */

}

offsetInt [0] += offsetInt[1l] + obox[offsetInt([1l] & OxO0F];

A

offsetInt [1] =

msg buf [msg index] = OFFSETB

/*
/*

((offsetInt [0] & OXFFFF)>>4) + (offsetInt([0]<<4);

stbox ((unsigned char) (msg buf [msg index] * OFFSETA),
key, 1len);

bit-trade between present octet and the one below */
(msg_index > 0)

k = msg buf[msg index - 1] * msg buf [msg index] ;

k &= stbox((unsigned char) (k * OFFSETA), key, len);

msg_buf [msg_index - 1] %= k;
msg_buf [msg_index] *= k;

random octet permutation */
exchange previous octet with a random one below it */

(msg_index > 1)

k = stbox((unsigned char) (msg buf [msg index] * OFFSETA),
key, 1len);

k = ((msg_index) * k) >> 8;

z = msg_buf [k];
msg buf [k] = msg buf[msg index - 1];
msg buf [msg index - 1] = z;

/* final octet permutation */
/* exchange last octet with a random one below it */

A

k = stbox((unsigned char) (0x37 OFFSETA) , key, len);
k = ((msg _index) * k) >> 8;

z = msg_buf [k];

msg buf [k] = msg buf[msg index - 1];

msg buf [msg index - 1] = z;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
106

© 0 N O O b~ WN =

2 o a4 o
a A W N = O

Common Cryptographic Algorithms Revision D.1

/* final involution and XORing */

k = stbox(msg buf[0], key, len);
for (msg index = 1; msg_index < octet count; msg index++)

msg buf [msg index] = stbox(msg buf [msg index], key, len);
k “= msg buf [msg index] ;

}

msg_buf [0] = k;
for (msg index = 1; msg_index < octet count; msg index++)
msg_buf [msg_index] *= k ;

09/13/2000

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
107

© 0 N O O b~ WN =

g o g a0 g a0 g a a S B b B B B B B B B W W W W WWWWWWNNDNDNDDNDNDNDNDNDNDNDN=2 22 2 A A A A A
o N O O B WN =2 O © 0N O O b WN =2 O O© 0N OO G & WN =2 0 O© © N O g & WN =2 O © 0N O O b WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

/* Inverse Transformation */

void SCEMA inv transform(unsigned char *msg buf,
const int octet count,
unsigned int *offInt,
const unsigned char *key,
const unsigned int *obox,
const unsigned char len)

unsigned char k, z;
int msg_ index;

/* inverse of final involution and XORing */

for (msg index = 1; msg_index < octet count; msg index++)

msg_buf [msg_index] *= msg buf[0];

for (msg index = 1; msg_index < octet count; msg index++)

{

A

msg buf [0] "= msg buf [msg_ index];
msg buf [msg index] = stbox(msg buf [msg index], key, len);

msg_buf [0] = stbox(msg buf[0], key, len);

/* initial octet permutation */
/* exchange last octet with a random one below it */

A

k = stbox((unsigned char) (0x37 OFFSETA) , key, len);

k = ((octet_count) * k) >> 8;

z = msg_buf [k];

msg_buf [k] = msg buf[octet count - 1];

msg_buf [octet count - 1] = z;

for (msg index = octet count - 1; msg index >= 0; msg index--)

{

/* random octet permutation */
/* exchange previous octet with a random one below it */

if (msg _index > 1)

{

A

k = stbox((unsigned char) (msg buf [msg index] OFFSETA) ,
key, 1len);
k = ((msg_index) * k) >> 8;

z = msg_buf [k];
msg buf [k] = msg buf[msg index - 1];
msg buf [msg index - 1] = z;

/* bit-trade between present octet and the one below */

if (msg_index > 0)
{
k = msg buf[msg index - 1] * msg buf [msg index];
k &= stbox((unsigned char) (k * OFFSETA), key, len);
msg_buf [msg_index - 1] *= k;
msg_buf [msg_index] *= k;

}

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
108

© 0 N O O b~ WN =

2 a4 o a o
A W N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Common Cryptographic Algorithms Revision D.1

09/13/2000

/* involutary lookup of present octet and offset generator cycle */

A

msg buf [msg index] = OFFSETA
stbox ((unsigned char) (msg buf [msg index]
key, 1len);

A

offsetInt [1] =

* OFFSETB) ,

((offsetInt [0] & OXFFFF)>>4) + (offsetInt([0]<<4);
offsetInt [0] -= offsetInt[1l] + obox[offsetInt[1l] & OxO0F];

}

/* SCEMA Algorithm */

void SCEMA (unsigned char *msg_buf,
const int octet count,
const unsigned char *csync,
const unsigned char id,
const unsigned char idMask,
const unsigned int decrypt,
keySched *schedPtr)

unsigned char k, z, offsetc;
int msg_ index;

unsigned char *key;

unsigned int *obox, *offKeyAux;
unsigned char 1len;

unsigned char csync3id;

unsigned

int csyncInt[2];

/* load key schedule element pointers */

key = schedPtr->scemaKey;
obox = schedPtr->obox;
offKeyAux = schedPtr->offKey;
len = schedPtr->neededLength;

/* Offset Generator Initialization */

csync3id = (csync[3] & ~idMask) | (id & idMask) ;

csyncInt [0] = (unsigned int) ((csync[l] << 8) | (csyncl[0] & OxFF));
csyncInt [1] = (unsigned int) ((csync3id << 8) | (csync[2] & OxFF));
offsetInt [0] = csyncInt[l] + offKeyAux[O0];

offsetInt [1]

csyncInt [0] + offKeyAux[1l];

offsetInt [0] += obox[offsetInt[1l] & O0xO0F]
+ obox|[(offsetInt[1] >> 4) & O0xO0F]
+ obox|[(offsetInt[1] >> 8) & O0xO0F]
+ obox [(offsetInt[1]

offsetInt [1] += obox[offsetInt[0] & O0xO0F]
+ obox [(offsetInt[0] >> 4) & O0xO0F]
+ obox [(offsetInt[0] >> 8) & O0xO0F]
+ obox|[(offsetInt [0]

>> 12) & O0xO0F]

>> 12) & O0xO0F]

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
109

© o N O g B W N =

BABA W W W WWWWWWWNNDNDNDNDNDNDNDNDNDNDN=2 22 2 A A A A A
- O © ©® N O O A W N =2 O © ©® N O g & WN = O © 0 ~NO O b WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

/* initial transformation */
if (decrypt)
SCEMA transform(msg _buf, octet count, offsetInt + 1, key,
obox, len) ;
else
SCEMA transform(msg_buf, octet count, offsetInt, key, obox, len);

/* CMEA */

offsetc = (unsigned char) ((offsetInt[0] + offsetInt[1l]) & OxXFF);
/* first manipulation (inverse of third) */

z = 0;

for (msg index = 0; msg_index < octet count; msg index++)

k = stbox((unsigned char) (z * offsetc), key, len);
msg buf [msg index] += k;
z = msg_buf [msg index];

}

/* second manipulation (self-inverse) */
for (msg index = 0; msg_index < octet count - 1; msg index += 2)

msg_buf [msg_index] *= msg buf [msg index + 1];

/* third manipulation (inverse of first) */
z = 0;
for (msg index = 0; msg_index < octet count; msg index++)
{
k = stbox((unsigned char) (z * offsetc), key, len);
Z msg buf [msg index] ;
msg buf [msg index] -= k;

}

/* final inverse transformation */
if (decrypt)
SCEMA_ inv_ transform(msg buf, octet count, offsetInt, key,
obox, len) ;
else
SCEMA inv_transform(msg buf, octet count, offsetInt + 1, key,
obox, len) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
110

10
1"
12
13
14

15

16

17

18

19

20

21
22
23
24

25
26
27
28

29
30

31
32

Common Cryptographic Algorithms Revision D.1 09/13/2000

2.9.4. Block and KSG Encryption Primitives (Level 2)

2.9441.

These Level 2 primitives call SCEMA at Level 1 and are called by the
voice privacy and message encryption procedures at Level 3.

SCEMA KSG

Procedure name:

SCEMA _KSG

Inputs from calling process:

keystreamBuf[n] n octets, 1 <=n<=256
requestedStreamLen 1-256

inputBuf[n] 1 - 6 octets

inputLen 1 octet

contentType 1 octet defining voice or message
schedPtr pointer to SCEMA key schedule
direction 1 bit

Inputs from internal stored data:

None.

Outputs to calling process:

keystreamBuf [n] n octets, 1 <=n <=256

Outputs to internal stored data:

None.

This encryption primitive generates a buffer of keystream of length
requestedStreamLen based on the value of input buffer inputBuf[n] of
length inputLen. It runs SCEMA in a KSG mode where the input is fed
to both SCEMA's PT (plaintext) input and its CS (cryptosync) input.

The content type variable allows it to generate unique keystream
depending upon whether it is used in voice privacy or message
encryption. (This primitive is not called in RLP encryption (Enhanced
Data Encryption).)

The pointer schedPtr is the SCEMA key schedule pointer described

earlier in Section

Direction indicates either the forward channel by 1, or the reverse
channel by 0.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
111

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-55 SCEMA KSG for Voice and Message Content

/* SCEMA KSG for Voice and Message Content "scemaKSG.c" */

#include "scema.h" /* see [Exhibit 2-53| */

void SCEMA KSG (unsigned char *keystreamBuf,

© 0 N O O b~ WN

AW W W W WWWWWWNNDNDNDNDNDNDNDNDN=S 2 a2 A A A
O © 0 N O g b WN =2 O © 0N O O & WN =2 O O© ©~N O G & WN = O

const unsigned int requestedStreamlLen,
const unsigned char *inputBuf,

const unsigned int inputLen,

const unsigned char contentType,
keySched *schedPtr,

const unsigned int direction)

unsigned int i;

unsigned char csync[4];
unsigned char id;

unsigned int outputStreamlLen;

/* Generates a minimum of 6 octets of keystream */
outputStreamLen = MAX(SixOctets,requestedStreamlLen) ;

/* Combine ID segments */
id = (unsigned char) (direction << 7) | contentType;

/* Repeat input across SCEMA's PT field */
for (1 = 0; 1 < outputStreamlLen; i++)

[)

keystreamBuf [1] = inputBufl[i % inputLen];

/*
Copy 4 least significant octets of PT to CS input.
ID is XORed in to yield KSGs that are unique with
respect to content and direction.
*/
for (1 = 0; 1 < 4; 1i++)

csync[i] = keystreamBuf[i] * id;

SCEMA (keystreamBuf, outputStreamlLen, csync, KSGArchitecture, KSGIdMask,

ENCRYPTING, schedPtr) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
112

© o N O O

10

1"

12

13

14

15

16
17
18
19
20

21
22
23
24

25
26

27
28

Common Cryptographic Algorithms Revision D.1 09/13/2000

2.9.4.2. Long Block Encryptor

Procedure name:

Long Block Encryptor

Inputs from calling process:

contentBuf[n] 6 octets

contentType 1 octet defining voice or message
decrypt 1 bit

schedPtr pointer to SCEMA key schedule
direction 1 bit

Inputs from internal stored data:

None.

Outputs to calling process:

contentBuf [n] 6 octets

Outputs to internal stored data:

None.

This encryption primitive block encrypts or decrypts a 6-octet buffer by
running three instances of SCEMA. The content type variable allows it
to generate unique keystream depending upon whether it is used in
voice privacy or message encryption. (This primitive is not called in
RLP encryption (Enhanced Data Encryption).)

The parameter decrypt is set to O for encryption and 1 for decryption. It
is needed here to determine the instance id number. This number
uniquely identifies the particular SCEMA instance to prevent certain
types of attacks.

The pointer schedPtr is the SCEMA key schedule pointer described
earlier in Section

Direction indicates either the forward channel by 1, or the reverse
channel by 0.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
113

© o N O O b~ W N

g o g a0 g a0 g a a S B b B B B B B B B W W W W WWWWWWNNDNDNDNDDNDNDNDNDNDNDRDN=2 2 a2 a A A A A
o N O O B WN =2 O © 0N O OO Hh WN =2 O © 0N O G & WN =2 0 O© © N O g & WN =2 O © 0 ~N O O b WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-56 Long Block Encryptor for Voice and Message Content

/*

Long Block Encryptor (6 octets)

"longBlock.c"

for Voice and Message Content

Note: The Long Block Encryptor/Decryptor's LHS and RHS are each 3 octets

in length.
*/

#include "scema.h" /* see Exhibit 2—53|*/

void Long Block Encryptor (unsigned char *contentBuf,
const unsigned char contentType,
const unsigned int decrypt,
keySched *schedPtr,
const unsigned int direction)

unsigned char csync[4] = { 0x00, 0x00, 0x00, 0x00 };

unsigned char id;
unsigned char instancelId;

/*

Combine ID segments

Note: In particular, the LongBlockArchitecture ID segment forces bit 2
of SCEMA's cryptosync top octet to 1 to differentiate it from all
other uses (i.e.KSG uses) where bit 2 is forced to 0.

*/
id = (unsigned char) (direction << 7) | contentType |
LongBlockArchitecture;
/*
SCEMA instance 0: PT <- LHS of contentBuf, CS <- RHS, instance =

for encrypt, and 2 for decrypt.

Note: The temporary variable csync is used to prevent buffer overflow
during reading since SCEMA reads in a 4-octet csync buffer. This is

not needed in the second instance since no overflow occurs and since

the highest cync input octet is zeroed by LongBlkIdMask.

*/

csync [0] contentBuf [3];
csync[1l] = contentBuf [4];

csync[2] = contentBuf [5];
if (decrypt)

instanceId = id | Instance2;
else

instanceId = id;

SCEMA (contentBuf, ThreeOctets, csync, instanceld, LongBlkIdMask,

decrypt, schedPtr) ;

/* SCEMA instance 1: PT <- RHS of contentBuf,

instanceId = id | Instancel;

SCEMA (contentBuf + 3, ThreeOctets, contentBuf,

LongBlkIdMask, decrypt,

schedPtr) ;

CS <- LHS, instance

instancelId,

1/

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

114

Common Cryptographic Algorithms Revision D.1

/* SCEMA instance 2: PT <- LHS of contentBuf,

csync [0] contentBuf [3] ;
csync[1l] = contentBuf [4];

csync[2] = contentBuf [5];
if (decrypt)
instanceId = id;
else
instanceId = id | Instance2;

CS <-

RHS,

instance

SCEMA (contentBuf, ThreeOctets, csync, instanceld, LongBlkIdMask,

decrypt, schedPtr) ;

09/13/2000

2 x/

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

115

© o N O O

1"
12

13

14

15

16

17

18

19
20
21
22
23

24
25
26
27
28
29
30

31
32
33
34

35
36
37

38
39

Common Cryptographic Algorithms Revision D.1

2.9.4.3. Short Block Encryptor

Procedure name:

Short Block Encryptor

Inputs from calling process:

contentBuf[n] 1 - 6 octets, 1 — 47 bits

numBits 1 — 47 number of content bits in
contentBuf buffer

contentType 1 octet defining voice or message

entropy[4] 4 octets of possible added entropy

decrypt 1 bit

schedPtr pointer to SCEMA key schedule

direction 1 bit

Inputs from internal stored data:

None.

Outputs to calling process:

contentBuf [n] 1 - 6 octets, 1 — 47 bits

Outputs to internal stored data:

None.

This encryption primitive block encrypts or decrypts a 1- to 6 octet
buffer that contains a minimum of 1 bit and a maximum of 47 bits.
(48 bits are also acceptable but the Short Block Encryptor will never be
called with this amount since the Long Block Encryptor is used for
48 bits.)

The Short Block encryptor and decryptor are formed from four Feistel
pieces that run SCEMA in a KSG mode. The Feistel piece contains the
following parameters in order: the input buffer, output buffer, a KSG
template used for filtering bits, an instance ID used for differentiating
SCEMA uses according to instances, direction, and content, entropy
from message type and RAND if extant for the type of content being
encrypted, and a pointer to the key schedule.

The contentType parameter allows the Short Block Encryptor to
generate unique keystream depending upon whether it is used in voice
privacy or message encryption. (This primitive is not called in RLP
encryption (Enhanced Data Encryption).)

The entropy parameter is used in for message encryption where the
variables Message Type, and RAND (for DCCH only) provide added
entropy to the encryption.

The parameter decrypt is set to O for encryption and 1 for decryption. It
is needed here to determine the instance id number. This number

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
116

A W N =

10

1"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Common Cryptographic Algorithms Revision D.1 09/13/2000

uniquely identifies the particular SCEMA instance to prevent certain
types of attacks. Also, the encryptor and decryptor architectures are not
isomorphic due to the four instances of SCEMA (Feistel pieces), and
thus the decryptor parameter is needed to select the architecture.

The pointer schedPtr is the SCEMA key schedule pointer described
earlier in Section

The direction parameter indicates either the forward channel by 1, or
the reverse channel by 0.

Exhibit 2-57 Short Block Encryptor for Voice and Message
Content

/*
Short Block Encryptor (less than 6 octets) for Voice and Message Content
"shortBlock.c"

Note: The Short Block Encryptor/Decryptor's LHS and RHS are each less
then or equal 3 octets in length. The number of content-bearing bits of
its LHS (left hand side) always equals or is one greater than the number
of content-bearing bits in its RHS.

*/

#include "scema.h" /* see Exhibit 2-53| */

void feistelPiece(const unsigned char *inputBuf,
unsigned char *outputBuf,
const unsigned char *ksgTemplate,
const unsigned char instanceld,
const unsigned char *entropy,
keySched *schedPtr)

unsigned int i;
unsigned char csync[4];
unsigned char keystreamBuf [3];

/*

SCEMA's PT input is tied to CS input with ID differentiator..
ID is XORed in to yield KSGs that are unique with respect

to content, direction, and instance.

*/

for (1 = 0; 1 < 3; i++)

{
csync[i]l = dinputBuf[i] * entropylil;
keystreamBuf [i] = csync[i] * instanceId;

}

csync[3] = entropyl[3]

A

instancelId;

SCEMA (keystreamBuf, ThreeOctets, csync, KSGArchitecture, KSGIdMask,
ENCRYPTING, schedPtr) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
117

© 0 N O g b WN -

- o
_—)

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

09/13/2000 Common Cryptographic Algorithms Revision D.1

/* KSG output is XORed with right buffer. The template passes
only those bits that correspond to the right buffer's content
bits.

*/

for (1 = 0; 1 < 3; i++)
outputBuf [i] *= keystreamBuf [i] & ksgTemplate[i];

void Short Block Encryptor (unsigned char *contentBuf,

const unsigned int numBits,
const unsigned char contentType,
const unsigned char *entropy,
const unsigned int decrypt,
keySched *schedPtr,

const unsigned int direction)

unsigned int i;

unsigned char id;

unsigned int numBitsLocal;
unsigned int octetSize;
unsigned int numTopBits;

unsigned char leftBuf[3] = {0x00,0x00,0x00};
unsigned char rightBuf[3] = {0x00,0x00,0x00};
unsigned int leftBufNumBits;
unsigned int rightBufNumBits;

unsigned char leftKsgTemplate[3] = {0x00,0x00,0x00};
unsigned char rightKsgTemplate[3] = {0x00,0x00,0x00};

unsigned char *pContent;
unsigned char *pLeft;
unsigned char *pRight;

/* Prevents accidental buffer overflow */

numBitsLocal = MIN (numBits,48) ;
numBitsLocal MAX (numBitsLocal, 1) ;

/*

Number of octets needed to contain contentBuf bits

Note: The index of the top octet (the highest one containing
content) is thus octetSize - 1.

*/
octetSize = ((numBitsLocal - 1) / 8) + 1;

/*
Number of content bits in top octet which occupy the top
bits of the octet

*/

numTopBits = numBitsLocal - (8 * (octetSize - 1));

/* Number of content bits in left buffer */

leftBufNumBits = (numBitsLocal + 1)/2;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
118

© o N O g B W N =

g o o a B B B B B B B DB DB DWW WWWWWWWWNDNDNDDNDNDNDNDRNDNDN= 22 a3 A A A
W N =2 O © ©® N O g & WN =2 O © ® N O O B WN =2 O © 0N O B WN =2 O © 0N O O b WN = O

Common Cryptographic Algorithms Revision D.1

/* Number of content bits in right buffer */
rightBufNumBits = numBitsLocal/2;

/* Ensure that unused contentBuf octets are zeroed and that
unused bits in the top octet are zeroed.

*/
for (i = octetSize; i < 6; i++)

contentBuf [1i] = 0;
contentBuf [octetSize - 1] >>= (8 - numTopBits);
contentBuf [octetSize - 1] <<= (8 - numTopBits) ;
/*

Divide contentBuf input bits between left and right buffers
to begin building a Feistel network. If numBitsLocal is even,
both buffers receive an equal number of bits. If numBitsLocal
is odd, the left buffer receives one more bit than the right
buffer.

*/

pContent = contentBuf;
pLeft = &leftBuf[0];
pRight = &rightBuf [0];

for (1 = 0; 1 < 3; i++)

{
*pLeft |= *pContent & OxAA;
*pRight |= (*pContent++ & 0x55) << 1;
*pLeft++ |= (*pContent & O0xAA) >> 1;
*pRight++ |= *pContent++ & 0x55;

}

/* Now that the content has been extracted from the contentBuf,

the buffer is re-used temporarily to generate KSG templates.
These templates will be used to pass only those KSG bits

corresponding to the content-bearing left and right buffer bits.

*/
for (1 = 0; 1 < octetSize; i++)
contentBuf [i] = OXFF;
for (i = octetSize; i < 6; i++)
contentBuf [1i] = 0;
contentBuf [octetSize - 1] >>= (8 - numTopBits) ;
contentBuf [octetSize - 1] <<= (8 - numTopBits) ;

pContent = contentBuf;
pLeft = &leftKsgTemplate[0];
pRight = &rightKsgTemplate[O0];

09/13/2000

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
119

© o N O g B W N =

a g & b B B B B B B DB DB W W WWWWWWWWNNDNDNDDNDNDNDNDNDND=2 2 2 A A A A A
- O © © N O O WN =2 O © 0N O G & WN =2 O O© ®N O g & WN = O © 0 ~NO O b WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

for (1 = 0; 1 < 3; i++)

{
*pLeft |= *pContent & OxAA;
*pRight |= (*pContent++ & 0x55) << 1;
*pLeft++ |= (*pContent & O0xAA) >> 1;
*pRight++ |= *pContent++ & 0x55;

}

/*
Combine ID segments. A DCCH/DTC

id segment is not needed for

differentiation because the two channels use different keys.

*/

id = (unsigned char) (direction << 7) | contentType;

/*
Encryption/Decryption

*/
if (!decrypt) /* encrypting */
{/*

Four Feistel-SCEMA instances.

contain an explicit instance
is zero.

*/

The zeroth instance does not
number because the number

feistelPiece (leftBuf,rightBuf, rightKsgTemplate,
id, entropy, schedPtr) ;

feistelPiece (rightBuf, leftBuf, leftKsgTemplate,
(unsigned char) (id | Instancel),
entropy, schedPtr) ;

feistelPiece (leftBuf,rightBuf, rightKsgTemplate,
(unsigned char) (id | Instance2),
entropy, schedPtr) ;

feistelPiece (rightBuf, leftBuf, leftKsgTemplate,
(unsigned char) (id | Instance3),
entropy, schedPtr) ;

/*
Almost everything above is done

*/

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

in reverse order.

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

120

© 0 N O O b~ WN =

BABA W W WWWWWWWWNNDNDNDNDNDNDNDNDNDN=2 2 2 A A A A A
- O © © N O O A W N =2 O © ©® N O g & WN =2 O © 0N O O b WN = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

else /* decrypting */
{
feistelPiece (rightBuf, leftBuf, leftKsgTemplate,
(unsigned char) (id | Instance3),
entropy, schedPtr) ;

feistelPiece (leftBuf,rightBuf, rightKsgTemplate,
(unsigned char) (id | Instance2),
entropy, schedPtr) ;

feistelPiece (rightBuf, leftBuf, leftKsgTemplate,
(unsigned char) (id | Instancel),
entropy, schedPtr) ;

feistelPiece (leftBuf,rightBuf, rightKsgTemplate,
id, entropy, schedPtr) ;

}
/*

Output processing: Load left and right buffers back into content
buffer.

*/

for (1 = 0; 1 < 6; i++)
contentBuf [1i] = 0;

pContent = contentBuf;

pLeft = &leftBuf[0];

pRight = &rightBuf [0];

for (1 = 0; 1 < 3; i++)

{
*pContent |= *pLeft & OxAA;
*pContent++ |= (*pRight >> 1) & 0x55;
*pContent |= (*pLeft++ << 1) & OxAA;
*pContent++ |= *pRight++ & 0x55;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
121

10
11
12
13
14
15
16
17

18

19

20

21
22

23

24

25
26
27
28
29
30

31
32
33
34

35
36
37

09/13/2000 Common Cryptographic Algorithms Revision D.1

2.9.5. Voice,

Message, and Data Encryption Procedures

(Level 3)

2.9.51.

These top-level procedures interface directly TIA/EIA-136-510 and call
the Level 2 procedures and, in the case of Enhanced Data Encryption
only, the Level 1 (SCEMA) procedure.

Enhanced Voice Privacy

Procedure name:

Enhanced Voice Privacy

Inputs from calling process:

coderVer 0,1, 2, etc.
speechBufl[n] n octets, 1 <=n <=256
numlaBits n>=1

speechBufRem [n] n octets, 0 <= n <= 256
numRemBits n>=0

decrypt 1 bit

keyGenerator 1,2,3, etc.

direction 1 bit

Inputs from internal stored data:

None.

Outputs to calling process:
speechBufl[n] n octets, 1 <=n <=256
speechBufRem [n] n octets, 0 <=n <= 256
Outputs to internal stored data:

None.

This Level 3 procedure encrypts or decrypts a frame of speech. The
frame is separated into two buffers, speechBufl and speechBufRem,
containing speech coders' Class A and remaining (Class |B and 2)
bits, respectively. Class 1A bits are those that are protected by a CRC in
the speech coder algorithm. The respective numbers of these bits are
numlaBits and numRemBits.

The parameter coderVer is set to 0 in TIA/EIA-136-510 and is not used
here. It comprises a hook in case the CCA would ever need to be
revised in the future due to a speech coder architecture incompatible
with this current procedure.

The parameter decrypt is set to 0 for encryption and 1 for decryption.
The encryptor and decryptor architectures are not isomorphic and thus
the decryptor parameter is needed to select the architecture.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

122

A W N =

10
11

12
13

14
15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Common Cryptographic Algorithms Revision D.1 09/13/2000

The parameter keyGenerator is currently set to 1 in TIA/EIA-136-510
to indicate CaveKeyl, a key schedule based on the current CAVE
algorithm running at its full strength. Internal to this procedure, the
parameter is used to point to the DTCKey CaveKeyl.

Direction indicates either the forward channel by 1, or the reverse
channel by 0.

If the number of Class 1A bits is 48, then this procedure calls the Long
Block Encryptor for these bits. If the number is greater than 48, the
excess above 48 are encrypted by the SCEMA KSG. However, prior to
encryption, their entropy is folded in to the first 48 bits that are

encrypted by the Long Block Encryptor.

If the number of Class 1A bits is less than 48, these bits are encrypted

by the Short Block Encryptor.

The remaining bits are encrypted by the SCEMA KSG using the

Class 1A ciphertext as input (entropy).

Exhibit 2-58 Enhanced Voice Privacy

/* Enhanced Voice Privacy "enhVoicePriv.c" */

#include "scema.h" /* see [Exhibit 2-53| */

void Enhanced Voice Privacy(const unsigned int coderVer,

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned char *speechBufl,

const unsigned int numlaBits,
unsigned char *speechBufRem,
const unsigned int numRemBits,
const unsigned int decrypt,
const unsigned int keyGenerator,
const unsigned int direction)

int i;

char keystreamBuf [MaxFrameOctetSize]l ;

int netlaOctetSize;

int numlaTopBits;

int excesslaOctetSize;

int remBitsOctetSize;

int numRemTopBits;

int ksgInputOctetSize;

char nullEntropyl[4] = { 0x00, 0x00, 0x00, 0x00 };

/* Pointers to be set and used later */

unsigned
unsigned

/*

char *pKeyStream;
char *pSpeech;

Number of octets that contain the Class 1A bits, and
number of bits in the 1A bits top octet.

*/
netlaOctetSize = ((numlaBits - 1) / 8) + 1;
numlaTopBits = numlaBits - (8 * (netlaOctetSize - 1));

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

123

© 0 N O O b~ WN =

A A B B B B B BB DB W W WWWWWWWWNDNDNDDNDNDNDNDNDNDN-=S 2 A a A A
© 0 N O O B WON -2 O © 00N OO hr WN =2 O © 0 N OO B~ WN-=2 O O© © N O O s~ wWN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

/*

Number of octets that contain any excess Class 1A bits
beyond the first 6 octets (48 bits). For ACELP and VSELP,
this equals zero.

*/
excesslaOctetSize = MAX (netlaOctetSize ,6) - 6;

/*

Number of octets that contain the remaining bits, namely
those bits not protected by a CRC, usually called Class 1B
and Class 2 bits. Also calculated is the number of bits

in the remaining bits top octet.

*/

remBitsOctetSize = ((numRemBits - 1) / 8) + 1;
numRemTopBits = numRemBits - (8 * (remBitsOctetSize - 1));
/*

If the number of Class 1A bits is greater than or equal

to 48 bits, the 6-octet Long Block Encryptor is used, and
its output feeds the KSG. However, if the number of 1A bits
is less than 48 bits, the Short Block Encryptor is used and
only its output is fed to the KSG. In this latter case, the

KSG input will be repeated as necessary (in SCEMA KSG()) to
fill SCEMA's plaintext input field.
*/

ksgInputOctetSize = MIN(netlaOctetSize, 6);

/* Input clean up */

/*
Ensure that bits other than the content-containing
1A top bits are zeroed.

*/

speechBufl [netlaOctetSize - 1] >>= (8 - numlaTopBits) ;
speechBufl [netlaOctetSize - 1] <<= (8 - numlaTopBits) ;

/*Do the same for the remaining bits, i.e the Class 1B and
Class 2 bits.

*/
speechBufRem[remBitsOctetSize - 1] >>= (8 - numRemTopBits) ;
speechBufRem[remBitsOctetSize - 1] <<= (8 - numRemTopBits) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
124

© 0 N O O b~ WN =

o O g g g g g g g g o a b B B B B B B BB B W W W W W W W WWWNDNDNDDNDNDNDNDNDRNDNDN=S 2 s A A A A
- O © © N O OO & W N =2 O © © N O G & WN =2 O O© ® N O G H WN =2 O © 0N O B WN = O © 0 ~N O O b WN = O

Common Cryptographic Algorithms Revision D.1

if (!decrypt) /* encrypting */
{

/*
If there are more than 48 1A bits, XOR the excess
into initial 48 bits to inject added entropy.

*/

for (1 = 0; 1 < excesslaOctetSize; i++)
speechBufl[i % 6] "= speechBufl[i + 6];

/*
Use different block encryptors depending on the number
of 1A bits.
*/
if (numlaBits >= 48)
{
/*
Block encrypt the first 6 octets of speechBufl.
Note: keyGenerator = 1 for CaveKeyl.The first
6 octets of speechBufl are replaced by ciphertext.

*/

Long Block Encryptor (speechBufl,VoiceContent, decrypt,
dtcScheds + keyGenerator - 1,
direction) ;

}

else /* numlaBits < 48 */

{
/*
Block encrypt numlaBits of speechBufl to yield the
same amount of ciphertext.

*/

Short Block Encryptor (speechBufl,numlaBits,VoiceContent,
nullEntropy, decrypt,
dtcScheds + keyGenerator - 1,
direction) ;

}
/*

Form the appropriate amount of keystream with
speechBufl as input. Either the first 6 octets

of speechBufl are used which comprise the output of the
Long Block Encryptor, or less are used if
ksgInputOctetSize is set less than 6 octets, namely the
output of the Short Block Encryptor.

*/

SCEMA_KSG (keystreamBuf,
excesslaOctetSize + remBitsOctetSize,
speechBufl, ksgInputOctetSize, VoiceContent,
dtcScheds + keyGenerator - 1,direction);

/*
XOR keystream into buffers to yield ciphertext
Start at zeroth keystream octet

*/

pKeyStream = &keystreamBuf [0] ;

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
125

09/13/2000

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

© 0 N O O b~ WN =

O g g g g g g o0 g a a s B B B B B B B DB B W W W W W W WwWWWNNDNDNDNDDNDNDNDNDNDRN=2 2 a2 a A A A A
O © 0 N O O b WN =2 O © 0N O & WN =2 O O© 0N O G & WN =2 O O© ©®~N O g & WN =2 O © 0 ~NO O h WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

/* First encrypt excess 1A bits if extant */
pSpeech = speechBufl + 6;

for (1 = 0; 1 < excesslaOctetSize; i++)
*pSpeech++ "= *pKeyStream++;

/*
Ensure that bits other than the content-containing
(encrypted) (excess) 1A top bits are zeroed.

*/

speechBufl [netlaOctetSize - 1] >>= (8 - numlaTopBits) ;
speechBufl [netlaOctetSize - 1] <<= (8 - numlaTopBits) ;
/* Then encrypt remaining bits */

pSpeech = speechBufRem;

for (1 = 0; 1 < remBitsOctetSize; i++)
*pSpeech++ "= *pKeyStream++;

else /* decrypting */

{

/*
Almost everything above is done in reverse order.
The KSG is now first, and the block encryptor second.

*/

SCEMA_KSG (keystreamBuf,
excesslaOctetSize + remBitsOctetSize,
speechBufl, ksgInputOctetSize, VoiceContent,
dtcScheds + keyGenerator - 1,direction);

pKeyStream = &keystreamBuf [0] ;
pSpeech = speechBufl + 6;

for (1 = 0; 1 < excesslaOctetSize; i++)
*pSpeech++ "= *pKeyStream++;

pSpeech = speechBufRem;
/* Decrypt remaining bits */

for (1 = 0; 1 < remBitsOctetSize; i++)
*pSpeech++ "= *pKeyStream++;

/* Block encryptor choice */

if (numlaBits >= 48)

{

Long Block Encryptor (speechBufl,VoiceContent, decrypt,

dtcScheds + keyGenerator - 1,
direction) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
126

© 0 N O O b~ WN =

W W W W N N N DN DNDNDNDNDNDDN = =2 s a A a A
W N =2 O © ©® N O g & WN =2 O © 0N O O b WN = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

else /* numlaBits < 48 */

Short Block Encryptor (speechBufl,numlaBits,VoiceContent,
nullEntropy, decrypt,
dtcScheds + keyGenerator - 1,direction);

}
/*

Ensure that bits other than the content-containing
(decrypted) 1A top bits are zeroed, and then do
post-XORing.

*/

speechBufl [netlaOctetSize - 1] >>= (8 - numlaTopBits) ;
speechBufl [netlaOctetSize - 1] <<= (8 - numlaTopBits) ;

if (numlaBits > 48)
for (1 = 0; 1 < excesslaOctetSize; i++)
speechBufl[i % 6] "= speechBufl[i + 6];

}
/*

Remaining output clean up: Ensure that bits other than the
content-containing remaining bits (Class 1B and Class 2
bits) are zeroed.

*/
speechBufRem[remBitsOctetSize - 1] >>= (8 - numRemTopBits) ;
speechBufRem[remBitsOctetSize - 1] <<= (8 - numRemTopBits) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
127

09/13/2000 Common Cryptographic Algorithms Revision D.1

2.9.5.2. Enhanced Message Encryption

© o N O O

1"
12

13

14

15

16

17

18

19
20
21

22
23
24
25
26

27
28
29

30
31
32
33
34
35

36
37

Procedure name:

Enhanced Message Encryption

Inputs from calling process:

msgBuf [n] n octets, 1 <=n<=256
numBits n>=1

dechDTC 1 bit

rand[4] 4 octets

msgType 1 octet

decrypt 1 bit

keyGenerator 1,2,3, etc.

direction 1 bit

Inputs from internal stored data:

None.

Outputs to calling process:

msgBuf[n] n octets, 1 <=n <=256

Outputs to internal stored data:

None.

This Level 3 procedure encrypts or decrypts the Layer 3 content of a
message as a whole. The message and its number of bits are denoted by
the parameters msgBuf and numBits respectively.

The parameter dcchDTC indicates to this procedure whether messages
are on the DCCH channel (dcchDTC =0), or on the DTC channel
(dechDTC =1). For DCCH encryption only, the value rand is used for
added entropy in addition to msgType (Message Type). For DTC
encryption, only msgType is used.

The parameter decrypt is set to 0 for encryption and 1 for decryption.
The encryptor and decryptor architectures are not isomorphic and thus
the decryptor parameter is needed to select the architecture.

The parameter keyGenerator is currently set to 1 in TIA/EIA-136-510
to indicate CaveKeyl, a key schedule based on the current CAVE
algorithm running at its full strength. Internal to this procedure, the
parameter is used to point to the DTC CaveKeyl key schedule
(DTCKey) for DTC messages, and to the DCCH CaveKeyl key
schedule (DCCHKey) for DCCH messages.

Direction indicates either the forward channel by 1, or the reverse
channel by 0.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
128

a A W N =

10
1"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Common Cryptographic Algorithms Revision D.1 09/13/2000

If the number of message bits is 48, then this procedure calls the Long
Block Encryptor for these bits. If this number is greater than 48, the
excess above 48 are encrypted by the SCEMA KSG. However, prior to
encryption, their entropy is folded in to the first 48 bits that are
encrypted by the Long Block Encryptor.

If the number of message bits is less than 48, these bits are encrypted by
the Short Block Encryptor.

Exhibit 2-59 Enhanced Message Encryption

/* Enhanced Message Encryption "enhMsgEnc.c" */

#include "scema.h" /* see [Exhibit 2-53| */

void Enhanced Message Encryption(unsigned char *msgBuf,

const unsigned int numBits,

const unsigned int dcchDTC,

const unsigned char *rand,

const unsigned char msgType,

const unsigned int decrypt,

const unsigned int keyGenerator,
const unsigned int direction)

unsigned int i;

unsigned char keystreamBuf [MaxMessageOctetSize];
unsigned int msgBufOctetSize;

unsigned int numTopBits;

unsigned int excessOctetSize;

unsigned int ksgInputOctetSize;

unsigned char entropy[4] = { 0x00, 0x00, 0x00, 0x00 };

/* Pointers to be set and used later */

unsigned char *pKeyStream;
unsigned char *pMessage;
keySched *pDcchDtc;

/* Entropy gathering and key schedule selection*/

if (dechDTC) /* DTC channel */
{
entropy[0] = msgType;
pDcchDtc = dtcScheds;

}

else /* DCCH channel */
{
for (1 = 0;
entropy [1 rand[i];
1 *= msgType;
= dcchScheds;

1 < 4; i++)
] =

entropy [0
pDcchDtc

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
129

© 0 N O g b WN -

Qg g g g a0 g g0 a0 a a s B B B B B B B DB B W W W W W WWwWWWNNDNDNDDNDNDNDNDNDRN=2 2 2 a2 A A A A A
O © 0 N O O b WN =2 O © 0N O G & WN =2 O O© 0N O G & WN =2 O O© ©®~N O g & WN =2 O © 0 ~NO O WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

/*
Number of octets that contain the message bits, and
number of bits in their top octet.

*/

msgBufOctetSize = ((numBits - 1) / 8) + 1;
numTopBits = numBits - (8 * (msgBufOctetSize - 1)) ;
/*

Number of octets that contain any excess message bits
beyond the first 6 octets (48 bits).
*/

excessOctetSize = MAX (msgBufOctetSize ,6) - 6;

/*

If the number of message bits is greater than or equal

to 48 bits, the 6-octet Long Block Encryptor is used, and
its output feeds the KSG. The KSG is run only if excess
bits are present. However, if the number of message bits
is less than 48 bits, only the Short Block Encryptor is
used.

*/
ksgInputOctetSize = MIN(msgBufOctetSize, 6);

/* Input clean up */

/*
Ensure that bits other than the content-containing
top bits are zeroed.

*/

msgBuf [msgBufOctetSize - 1] >>= (8 - numTopBits) ;
msgBuf [msgBufOctetSize - 1] <<= (8 - numTopBits) ;

if (!decrypt) /* encrypting */
{/*

If there are more than 48 message bits, XOR the excess
into initial 48 bits to inject added entropy.

*/

for (1 = 0; 1 < excessOctetSize; i++)
msgBuf[1 % 6] "= msgBufli + 6];

/*
Use different block encryptors depending on the number
of message bits.

*/

if (numBits >= 48)

{
/*
Block encrypt the first 6 octets of msgBuf and
first inject entropy.
Note: keyGenerator = 1 for CaveKeyl.The first
6 octets of msgBuf are replaced by ciphertext.

*/

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
130

© o N O O B W N =

g o g a0 a B B B B B B B DD DWW WWW W WWWWNDNDNDDNDNDNDNDNDNDRNDNDN= 2 A a A A A
A W N =2 O © ©® N O G & WN =2 O © 0N O B WN =2 O © 0 ~NO OO B WN -~ O © 0N O O b WN = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

for (i = 0; i < 4; i++)
msgBuf [1] = entropylil;

Long Block Encryptor (msgBuf,MessageContent, decrypt,
pDcchDtc + keyGenerator - 1,
direction) ;

if (numBits > 48)
/*
Form the appropriate amount of keystream with
msgBuf as input.

*/

SCEMA KSG (keystreamBuf, excessOctetSize, msgBuf,
ksgInputOctetSize, MessageContent,
pDcchDtc + keyGenerator - 1, direction);

/*
XOR keystream into buffers to yield ciphertext
Start at zeroth keystream octet

*/
pKeyStream = &keystreamBuf [0] ;
/* First encrypt excess message bits if extant */

pMessage = msgBuf + 6;
for (1 = 0; 1 < excessOctetSize; i++)
*pMessage++ ~= *pKeyStream++;

}

else /* numBits < 48 */
/*
Block encrypt numBits of msgBuf to yield the
same amount of ciphertext.

*/

Short Block Encryptor (msgBuf, numBits, MessageContent,
entropy, decrypt, pDcchDtc + keyGenerator - 1,direction);

}
/*

Ensure that bits other than the content-containing
(encrypted) (excess) message top bits are zeroed.

*/

msgBuf [msgBufOctetSize - 1] >>= (8 - numTopBits) ;
msgBuf [msgBufOctetSize - 1] <<= (8 - numTopBits) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
131

© 0 N O O b~ WN =

g g a0 g a0 a0 a a H H B B B B B BB B W W W WWWWWWwWNDNDNDNDNDNDNDNDNDN=S 2 aaaaaa A
N O OB WON =2 O © 0N O BB WN -2 O © 00N O ar WN =2 O O 00 N OGO & WN =2 O O© © N O G & WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

else /* decrypting */
{
/*
Almost everything above is done in reverse order.
The KSG is now first, and the block encryptor second.

*/

if (numBits > 48)

{

SCEMA_ KSG (keystreamBuf, excessOctetSize, msgBuf, ksgInputOctetSize,
MessageContent, pDcchDtc + keyGenerator - 1,direction);

pKeyStream = &keystreamBuf [0] ;
pMessage = msgBuf + 6;

for (1 = 0; 1 < excessOctetSize; i++)
*pMessage++ ~= *pKeyStream++;

}

/* Block encryptor choice */

if (numBits >= 48)
{
Long Block Encryptor (msgBuf,MessageContent, decrypt,
pDcchDtc + keyGenerator - 1,
direction) ;

for (i = 0; i < 4; i++)
msgBuf [1] = entropylil;

}

else /* numBits < 48 */
Short Block Encryptor (msgBuf,numBits,MessageContent, entropy,
decrypt, pDcchDtc + keyGenerator - 1,direction);

}
/*

Ensure that bits other than the content-containing
(decrypted) message top bits are zeroed, and then do
post-XORing.

*/

msgBuf [msgBufOctetSize - 1] >>= (8 - numTopBits) ;
msgBuf [msgBufOctetSize - 1] <<= (8 - numTopBits) ;

if (numBits > 48)
for (1 = 0; 1 < excessOctetSize; i++)
msgBuf[1 % 6] "= msgBufli + 6];

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
132

© N o O

10

11

12

13

14

15
16
17
18
19

20
21

22
23
24
25

26
27
28

Common Cryptographic Algorithms Revision D.1 09/13/2000

2.9.5.3. Enhanced Wireless Data Encryption

Procedure name:

Enhanced Data Mask

Inputs from calling process:

mask[len] len octets
HOOK 32 bits

len 1 <=len<=256
keyGenerator 1,2,3, etc.

Inputs from internal stored data:

None.

Outputs to calling process:

mask[len] len octets

Outputs to internal stored data:

None.

Enhanced data encryption for 136 wireless data services is provided by
running SCEMA in the encrypt mode as a KSG. This procedure
generates an encryption mask of length len octets, between 1 and 256
inclusive. A pointer for the output value "mask" buffer containing
keystream mask of length len octets.

HOOK is a 32-bit value that serves as cryptosync, and is input both to
SCEMA'’s cryptosync input and repeated across its plaintext field.

The parameter keyGenerator is currently set to 1 in TIA/EIA-136-510
to indicate CaveKeyl, a key schedule based on the current CAVE
algorithm running at its full strength. Internal to this procedure, the
parameter is used to point to the DTC CaveKeyl.

Internal to this procedure is a mechanism for differentiating this
keystream from that produced by other uses of SCEMA in the KSG
mode. To accomplish, it uses the identifier RlpContent.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
133

© 0 N O O b~ WN

a g o a g g g0 g a a s B B B B B B B B B W W W W W W WWWWNNDNDNDNDDNDNDNDNDNDNDRDN=2 2 2 A A A A A
© 0 N O O b» WN =2 O © 0N O bh WN =20 © 0 N O G & WN =2 0 O© © N O g B WN =2 O © 0 ~NO O b WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

Exhibit 2-60 Enhanced Data Mask Generation

/* Enhanced Data Mask Generation "enhDataMask.c" */

#include "scema.h" /* see [Exhibit 2-53| */

void Enhanced Data Mask (unsigned char *mask,
const unsigned long HOOK,
const unsigned int len,
const unsigned int keyGenerator)

unsigned int i;
unsigned char csync[4];
unsigned char maskSix[6];

csync[0] = (unsigned char) (HOOK & OxFF) ;

csync[l] = (unsigned char) ((HOOK >> 8) & OxFF);
csync[2] = (unsigned char) ((HOOK >> 16) & OXFF);
csync[3] = (unsigned char) ((HOOK >> 24) & OxFF);

if (len >= 6)

{

/* Repeat HOOK across SCEMA's PT field */
for (1 = 0; 1 < len; i++)

[)

mask[i] = csyncli % 4];

/* Prevents cross-replay effects with other content types */
for (1 = 0; 1 < 4; 1i++)
csync[i] "= RlpContent;

/*

Note: keyGenerator = 1 for CaveKeyl.

Since RLP encryption uses SCEMA in a KSG mode, the values
KSGArchitecture and KSGIdMask are passed. This serves to force

bit 2 in the cryptosync's top octet to zero to differentiate
the cryptosync from that used in the Long Block Encryptor.
*/

SCEMA (mask, len, csync, KSGArchitecture, KSGIdMask, ENCRYPTING,
dtcScheds + keyGenerator - 1);

/*
If requested length is less then 6, create 6 octets of keystream
and output only what is needed

*/

else

{

[)

for (i = 0; 1 < 6; i++)
] = csyncli % 4];

maskSix[i

/* Prevents cross-replay effects with other content types */
for (1 = 0; 1 < 4; i++)
csync[i] "= RlpContent;

SCEMA (maskSix, SixOctets, csync,KSGArchitecture, KSGIdMask, ENCRYPTING,
dtcScheds + keyGenerator - 1);

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
134

© 0 N O O b~ WN =

-
o

Common Cryptographic Algorithms Revision D.1 09/13/2000

for (1 = 0; 1 < len; i++)

{
}

mask[i] = maskSix[i];

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
135

10

11

12

13

14

15

16

17
18
19
20
21
22
23
24

25

26
27

09/13/2000 Common Cryptographic Algorithms Revision D.1

3. Test Vectors

3.1. CAVE Test Vectors

These two test cases utilize the following fixed input data (expressed in

hexadecimal form):

RANDSSD = 4D 18EE

Authentication =
Algorithm Version

AUTH_DATA =
ESN =

msg_buf[0] . . = B6, 2D, A2, 44, FE, 9B
msg_buf [5]

AAO05 895C
C7

79 2971

D75A 96EC

The following A-key and check digits should be entered in decimal

form:

14 1421 3562 3730 9504 8808 6500

Conversion of the A-key, check digit entry into hex form will produce:

A-key, check bits = (C442 F56B E9E1 7158, 1 51E4

The above entry, when combined with RANDSSD, will generate:

SSD_A

SSD B

3.1.1. Vector 1

CC38 1294 9F4D CDOD

3105 0234 580E 63B4

If RAND CHALLENGE = 34A2 B05F:

(Using SSD_ AUTH =SSD _A)

AUTH_SIGNATURE= 3 66F6

CMEA key k0,. .k7 = A0
ECMEA key = 5D
offset key = BD
SEED NF key = 2F
ECMEA NF key = 73
offset nf key = 14

sync = 3D A2

CMEA output

7B
ED
71
15
03
6F

1C
AD
D5
Fé6
44
91

D1
53
CD
D1
3C
5B

02 75 69 14
5B 4A B9 FC

27
55 DF B2 58

E5 6B 5F 01 65 C6

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

136

© o N O O A W N -

N = =4 a4 o o a a a4 a oo
o © N O O b~ W N = O

N
=

22

23

24
25
26
27
28
29
30
31

32

33
34
35
36
37
38
39
40
41
42
43
44

Common Cryptographic Algorithms Revision D.1

Mobile station:

ECMEA Output = d5
ECMEA NF Output =

Base Station:

ECMEA Output = 50
ECMEA NF Output =

VPM= 18 93 94 82
A5 39 F9 5B
EE 32 AC 21
A7 C9 63 88
E2 D6 CA 1D
C7 1A 73 A4
95 34 70 E3
50 BE 4F D6
DF

3.1.2. Vector 2

39
3a

9d
96

4A
4D
6B
57
77
17
9B
47

a7
30

c7
7¢C

1A
22
26
8C
B6
B2
CA
80

45
6a

9b
7b

2F
D5
0D
BS
1F
12
3F
CcC

cd
40

19
e4d

99
7C
36
57
D5
1E
DO
B8

11

39 b5

di
9d

34

09/13/2000

If RAND_CHALLENGE = 5375

(Using SSD_ AUTH =SSD _A)

AUTH_SIGNATURE=
CMEA key k0,. k7
ECMEA key =
offset key =
SEED_NF key
ECMEA NF key =
offset_nf key

sync = FF FF

CMEA output

Mobile station:

ECMEA Output = 91
ECMEA NF Output =

Base Station:

ECMEA Output = fO
ECMEA NF Output =

DF99:

0 255A

FO
B6
F9
65
5C
C4

2B

cf
cd

b8
od

06
DF
A4
33
EF
74

AD

el
51

9a
fb

A8
9A
2C
AE
OE
3C

16

25
22

4b
93

5A
DO
FA
92
EO
71

A9

5e
b2

06
e4

05
6E

Cc7
80

8F

44
74

55
59

CD
5A

6A

32

49

da

B3 2A
3D 14

1F 6B

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
137

© © N O b~ W N =

=
o

1"

12

13
14
15
16
17
18
19
20

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

09/13/2000

VPM= 20 38 01 6B
28 48 98 75
49 6E OB BB
46 E6 D5 B4
76 6C SE D4
D2 DC 94 BO
D1 6C 7E 9E
02 C9 23 63
8F

3.1.3. Vector 3

89
AB
D2
12
98
Fé6
AC
6F

3C
18
CB
B3
C8
D4
6B
61

F8
65
A8
8C
Al
3E
CA
68

Common Cryptographic Algorithms Revision D.1

AQ
5A
28
9E
4A
EO
43
E8

If RAND_CHALLENGE = 6¢00

(Using SSD_ AUTH =SSD _A)

AUTH_SIGNATURE
CMEA key k0,. k7
ECMEA key
offset key
SEED_NF key
ECMEA NF key
offset_nf key

sync = FF FF

CMEA output
Mobile station:

ECMEA Output = 41
ECMEA NF Output =

Base Station:

ECMEA Output = 6d
ECMEA NF Output =

VPM = ED A7 AA 63
30 26 8C C5
CD 0D 1D 97
1D CF 47 1F
71 18 26 73
13 2A 51 69
0B 30 5A 09
A9 55 7A 00
3E

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

ed
ab

73
8c

27
18
21
DD
TA
27
Fé
23

0258:

0 8a8a

5A
20
ES
84
33
EO

A3

74
aa

27
el

EA
88
06
BE
5F
55
15
D8

C8
64
83
AD
37
2C

06

99
88

54
e2

F8
8F
2D
E3
09
2B
8F
FD

04
57
41
CF
C8
66

25

7d
T7e

3d
b4

3D
6D
91
E1
cC
2B
A7
4C

25
Fé6
FB
40
F3
FA

D8

41
be

9c
fd

32
EE

BB
85

3E

£3

62

FB 2D 54
60 EB AD

50 C7 03

21

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

138

© © N o a b~ W N -

A OB A B W W W W WWWWWWNNNDNDNDNDNDNDNDNDN=2 2 a2 a A A
W N =2 O © ® N O g s WN =20 © 0N O O b WN =2 O © © N O O b W N =2 O

Common Cryptographic Algorithms Revision D.1

3.1.4. Test Program

09/13/2000

#include <stdio.h>
"cave.h" /* see Exhibit 2-2 | */
"ecmea.h" /* see Exhibit 2-29] */

#include
#include

/* NAM stored

unsigned
unsigned
unsigned
unsigned
unsigned

char
char
char
char
char

data */

ESN[4] = { 0xd7, O0x5a, 0x96, Oxec };
MIN1[3] = { 0x79, 0x29, 0x71 };

A key[8];

SSD_A NEW[8], SSD A[8];

SSD B NEW[8], SSD B[8];

/* data received from the network */

unsigned

unsigned
unsigned
unsigned

char

char
char
char

/* cryptosync

unsigned
unsigned

char
char

RANDSSD [7] = { 0x4d, 0x18, Oxee, Oxaa,

0x05, 0x89, 0x5c };
RAND1 [4] =

RAND3 [4]

(meaning is air interface specific)

syncl[2] = { 0x3d, O0xa2 };
sync2[2] { oxff, Oxff };

/* test plaintext */

unsigned char buf[6] = { 0xbé, 0x2d, 0xa2, 0x44, Oxfe, 0x9b };

/* entered A key and checksum */

char digits[26] =

{ 11
131
10!

12

12

12

I4I,
I'7I,
I8I,

v1v, v4r, 20, v, 131 a5 gt
'3, rQ', '9', '5r,_iQr, 14r, rgr,
'6', '5', 'Q', 10! };

void pause (void)

printf ("Enter to continue\n") ;
getchar () ;

{ 0x34, 0xa2, 0xb0, 0x5f };
RAND2 [4] = { 0x53, 0x75, 0xdf, 0x99 };
{ ox6c, 0x00, 0x02, 0x58 }

*/

I2I,
I8I,

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

139

© o N O g B W N =

1"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

09/13/2000 Common Cryptographic Algorithms Revision D.1

void main (void)

{

int 1, 3J;

unsigned char auth datal3], test buf[6];
unsigned long AUTHR;

/* check A key and SSD */

if (A Key Verify(digits))

{
printf ("A key verified ok\n");

}

else
printf ("A key verification failed\n");
return;

}

/* check SSD generation process */

SSD_Generation (RANDSSD) ;
SSD_Update () ;

printf ("SSD A =");
for (1 = 0; 1 < 4; i++)
{

printf (" ") ;
for (j = 0; J < 2; J++)
printf ("%$02x", (unsigned int)SSD A[2*i+]j]);

printf ("\n") ;
printf ("SSD B
0; 1

for (i =

{

")
4; i++)

Al

printf (" ") ;
for (j = 0; J < 2; J++)
printf ("%$02x", (unsigned int)SSD B[2*i+]j]);

printf ("\n") ;
/* Inputs for test vectors */
/* put MIN1 into auth data (no dialed digits for this test) */

for (1 = 0; 1 < 3; i++)
auth dataf[i] = MIN1[i];

/* vector 1 */
printf ("\nVector 1\n\n");
AUTHR = Auth Signature (RAND1,auth data,SSD _A,1);

printf ("RAND CHALLENGE =");
for (i = 0; i < 2; i++)
{
printf (" ") ;
for (j = 0; J < 2; J++)
printf ("%02x", (unsigned int)RAND1 [2*1+7]) ;

}

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
140

© 0 N O g b WN -

o O g g g g g g g g o a b B B B B B B BB B W W W W W W W WWWNDNDNDDNDNDNDNDNDRNDNDN=S 2 s A A A A
- O © © N O OO & W N =2 O © © N O G & WN =2 O O© ® N O G H WN =2 O © 0N O B WN = O © 0 ~N O O b WN = O

Common Cryptographic Algorithms Revision D.1

printf ("\n") ;

printf ("AUTH SIGNATURE = %011lx %041x\n",

AUTHR & OxXO00QQ0ffff);

for (1 = 0; 1 < 6; 1i++)
test buf[i] = buf[il;

Key VPM Generation() ;
ECMEA_Secret Generation() ;

Non Financial Seed Key Generation() ;
Non Financial Secret Generation() ;

printf (" CMEA key =");
for (1 = 0; 1 < 8; i++)

printf (" %02x", (unsigned
printf ("\n") ;

printf (" ECMEA key =");
for (1 = 0; 1 < 8; 1i++)

printf (" %02x", (unsigned
printf ("\n") ;

printf (" offset key =");
for (1 = 0; 1 < 4; 1i++)

printf (" %02x", (unsigned
printf ("\n") ;

printf (" SEED NF key =");
for (1 = 0; 1 < 5; i++)
printf (" %02x", (unsigned

printf ("\n") ;

printf (" ECMEA NF key =");
for (1 = 0; 1 < 8; i++)

printf (" %02x", (unsigned
printf ("\n") ;

printf (" offset nf key =");
for (1 = 0; 1 < 4; 1i++)

printf (" %02x", (unsigned
printf ("\n") ;

printf (" sync =");

int) cmeakey[i]) ;

int)ecmea key[i]);

int)offset keyl[il);

int) seed nf keyl[i]);

int)ecmea nf keyl[il);

int)offset nf keyl[il);

printf (" %$02x %$02x\n", (unsigned int)syncl[O0],

(unsigned int)syncl[1]);

pause () ;
printf (" Input =");
for (1 = 0; 1 < 6; i++)

printf (" %02x", (unsigned
printf ("\n") ;

CMEA (test_buf,6) ;

printf (" CMEA Output =");

for (i = 0; i < 6; i++)
printf (" %02x", (unsigned
printf ("\n") ;

int) test buf[il]);

int) test buf[il]);

AUTHR >> 16,

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
141

© 0 N O O b~ WN =

o O g g g g g g o a0 o a b B B B B B B B DB DB W W W W W W W WWWNDNDNDDNDNDNDNDNDNRNDNDN=S 2 A a A A A
- O © 0 N O OO & W N =2 O © © N O G & WN =2 O O© ® N O G H WN -2 O © 0~NO O B WN = O © 0 ~N O O b WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

for (1 = 0; 1 < 6; i++)
test buf[i] = buf[il;
ECMEA (test_buf,6,syncl,0,0);

printf (" ECMEA Output =");
for (i = 0; 1 < 6; i++)
printf (" %02x", (unsigned int)test buf[i]);

printf ("\n") ;

for (1 = 0; 1 < 6; i++)
test buf[i] = buf[il;
ECMEA (test_buf,6,syncl,0,1);

printf ("ECMEA NF Output =");
for (1 = 0; 1 < 6; 1i++)

printf (" %02x", (unsigned int)test buf[il);
printf ("\n") ;

printf ("VPM =") ;

for (i = 0; 1 < 65; i++)
{
printf (" %02x", (unsigned int)VPMI[i]) ;
if (((i+1)%8) == 0)
printf ("\n "

printf ("\n") ;

pause () ;

/* vector 2 */

printf ("\nVector 2\n\n") ;

AUTHR = Auth Signature (RAND2,auth data,SSD_A,1);

printf ("RAND CHALLENGE =");
for (i = 0; i < 2; i++)
{
printf (" ") ;
for (j = 0; J < 2; J++)
printf ("%02x", (unsigned int)RAND2 [2*1+7]) ;

printf ("\n") ;

printf ("AUTH SIGNATURE = %011x %041lx\n", AUTHR >> 16,
AUTHR & 0xO0000ffff) ;

for (1 = 0; 1 < 6; i++)
test buf[i] = buf[il;

Key VPM Generation() ;

ECMEA_Secret Generation() ;

Non Financial Seed Key Generation() ;
Non Financial Secret Generation() ;

printf (" CMEA key =");
for (1 = 0; 1 < 8; i++)
printf (" %02x", (unsigned int)cmeakey[i]) ;

printf ("\n") ;
printf (" ECMEA key =");

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
142

© 0 N O O b~ WN =

o O g g a0 g g g o g o a b B B B B B B BB B W W W W W W W WWWNDNDNDDNDNDNDNDNDNRNDNDN=S 2 s A A A A A
- O © © N O OO H» W N =2 O © © N O G & WN =2 O © ® N O G H WN -2 O © 0N O B WN = O © 0N O O b WN = O

Common Cryptographic Algorithms Revision D.1

for (1 = 0; 1 < 8; i++)
printf (" %02x", (unsigned int)ecmea key[i]);

printf ("\n") ;

printf (" offset key =");
for (1 = 0; 1 < 4; i++)
printf (" %02x", (unsigned int)offset keyl[il);

printf ("\n") ;

printf (" SEED NF key =");
for (1 = 0; i < 5; i++)
printf (" %02x", (unsigned int)seed nf keyl[il);

printf ("\n") ;

printf (" ECMEA NF key =");
for (1 = 0; 1 < 8; i++)
printf (" %02x", (unsigned int)ecmea nf keyl[il);

printf ("\n") ;

printf (" offset nf key =");
for (1 = 0; 1 < 4; i++)
printf (" %02x", (unsigned int)offset nf key[i]);

printf ("\n") ;

printf (" sync =");
printf (" %$02x %$02x\n", (unsigned int)sync2[0],
(unsigned int)sync2[1]);

pause () ;
printf (" Input =");
for (1 = 0; 1 < 6; i++)

printf (" %02x", (unsigned int)test buf[il]);

printf ("\n") ;

CMEA (test_buf,6) ;

printf (" CMEA Output =");
for (1 = 0; 1 < 6; i++)
printf (" %02x", (unsigned int)test buf[i]);

printf ("\n") ;

for (1 = 0; 1 < 6; i++)

test buf [i]

buf [i];

ECMEA (test_buf,6,sync2,0,0) ;

printf (" ECMEA Output =");
for (1 = 0; i < 6; i++)
printf (" %02x", (unsigned int)test buf[i]);

printf ("\n") ;

for (1 = 0; 1 < 6; i++)

test buf [i]

buf [i];

ECMEA (test_buf,6,sync2,0,1) ;

printf ("ECMEA NF Output =");
for (1 = 0; 1 < 6; i++)
printf (" %02x", (unsigned int)test buf[i]);

printf ("\n") ;

printf ("VPM =") ;

09/13/2000

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

143

© o N O g B W N =

o O g g g g g g g g o a b B B B B B B BB B W W W W W W W WWWNDNDNDDNDNDNDNDNRNDNDN=S 2 s A A A A A
- O © © N O O H» W N =2 O © © N O G & WN =2 0 © ®NO G H WN -2 O © 0 ~NO O B WN - O © 0 ~N O O b WN = O

09/13/2000

for (i = 0; 1 < 65; i++)
printf (" %02x", (unsigned
if (((i+1)%8) == 0)
printf ("\n "

printf ("\n") ;
pause () ;
/* vector 3 */

printf ("\nVector 3\n\n");

Common Cryptographic Algorithms Revision D.1

AUTHR = Auth Signature (RAND3,auth data,SSD _A,1);

printf (" RAND CHALLENGE =") ;
for (1 = 0; 1 < 2; i++)
{

printf (" ") ;

for (j = 0; J < 2; J++)

printf ("%02x", (unsigned int)RAND3 [2*1+7]) ;

printf ("\n") ;

printf ("AUTH SIGNATURE = %011lx %041x\n",

AUTHR & 0xO0000ffff) ;

for (1 = 0; 1 < 6; 1i++)
test buf[i] = buf[il;

Key VPM Generation() ;
ECMEA_Secret Generation() ;

Non Financial Seed Key Generation() ;
Non Financial Secret Generation() ;

printf (" CMEA key =");

for (1 = 0; 1 < 8; 1i++)
printf (" %02x", (unsigned

printf ("\n") ;

printf (" ECMEA key =");

for (1 = 0; 1 < 8; 1i++)

printf (" %02x", (unsigned
printf ("\n") ;

printf (" offset key =");
for (1 = 0; 1 < 4; 1i++)

printf (" %02x", (unsigned
printf ("\n") ;

printf (" SEED NF key =");
for (1 = 0; 1 < 5; 1i++)

printf (" %02x", (unsigned
printf ("\n") ;

printf (" ECMEA NF key =");
for (1 = 0; 1 < 8; 1i++)

printf (" %02x", (unsigned
printf ("\n") ;

int) cmeakey[i]) ;

int)ecmea key[i]);

int)offset keyl[il);

int)seed nf keyl[i]);

int)ecmea nf keyl[il);

AUTHR >> 16,

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
144

© o N O O B WN =

g o o a B B B B B B B DB DB DWW WWWWWWWWNDNDNDDNDNDNDNDRNDNDN= 22 a3 A A aaaa
W N =2 O © © N O G & WN =2 O © ®©® N O G B WN =2 O © 0N O B WN =2 O © 0N O O b WN = O

Common Cryptographic Algorithms Revision D.1

printf (" offset nf key =");
for (1 = 0; 1 < 4; 1i++)

printf (" %02x", (unsigned int)offset nf key[i]);
printf ("\n") ;

printf (" sync =");
printf (" %$02x %$02x\n", (unsigned int)sync2[0],
(unsigned int)sync2[1]);

pause () ;
printf (" Input =");
for (1 = 0; 1 < 6; i++)

printf (" %02x", (unsigned int)test buf[i]);
printf ("\n") ;

CMEA (test_buf,6) ;

printf (" CMEA Output =");
for (1 = 0; 1 < 6; 1i++)

printf (" %02x", (unsigned int)test buf[il);
printf ("\n") ;

for (1 = 0; 1 < 6; i++)
test buf[i] = buf[il;
ECMEA (test_buf,6,sync2,0,0) ;

printf (" ECMEA Output =");
for (1 = 0; 1 < 6; 1i++)

printf (" %02x", (unsigned int)test buf[i]);
printf ("\n") ;

for (1 = 0; 1 < 6; i++)
test buf[i] = buf[il;
ECMEA (test_buf,6,sync2,0,1) ;

printf ("ECMEA NF Output =");
for (1 = 0; 1 < 6; 1i++)

printf (" %02x", (unsigned int)test buf[i]);
printf ("\n") ;

printf ("VPM =") ;

for (i = 0; 1 < 65; i++)
printf (" %02x", (unsigned int)VPMI[i]) ;
if (((i+1)%8) == 0)
printf ("\n "

printf ("\n") ;

pause () ;

09/13/2000

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

145

10

11

12

09/13/2000 Common Cryptographic Algorithms Revision D.1

3.2. Wireless Residential Extension Test Vector

3.2.1. Input data

Manufacturer’s Key

BID

Random Challenge

ACRE Phone Number

Random WRE

ESN

Random WIKEY

WRE Key

2 14 OE 9F 70 50 D7 EA
42 D9 C9 00 C9 14 14
CF

00 00 01 0O

7E 49 AE 4F

549-8506

3 17 52

ED 07 13 95

B7 FC 75 5A FO A4 90

CB 60 F9 9F 5B 15 6F AE

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

146

© © N o a b~ W N -

a g a0 g a0 g o g o a b B B B B B B BB B W W W oW oW W WWWWNNDNDDNDNDNDNDNDNDN= 2 A A A A A
© © N O O hd WN =2 O O 0N OO s OON =20 0 NP WN -2 O © 0N O P ON =20 0 00N OO WN =2 O

Common Cryptographic Algorithms Revision D.1

3.2.2. Test Program

09/13/2000

#include <stdio.h>

#include
#include

/* NAM s

unsigned
unsigned
unsigned
unsigned
unsigned

"cave.h"
"wre.

tored

char
char
char
char
char

hll

/* see Exhibit 2-2 }/

/* see [Exhibit 2-31I|*/

data */

ESN [4]

MIN1 [3]

A key[8];

{ ox79, 0x29, 0x71 };

SSD_A NEW[8], SSD_A[8];
SSD_B_NEWI[8], SSD_BI[8];

/* Test vector inputs */

unsigned char manufact[l16] = { 0x85, 0x03, O0xA7,

unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

char

char

char

char

char

char

baseid[4]
random challenge[4] = { O0x7E, 0x49, OxAE, O0x4F };

acre phone [3]

/* CAVE outputs

extern unsigned
extern unsigned
extern unsigned

0x14, 0x35, OxFA,
0xB6, 0x72, 0x40,
0x45, 0x05, 0x33,

{ 0xd7, o0x5a, 0x96, Oxec };

0xDC,
0x90,
0x32,
0xCO };

= { 0x00, 0x00, 0x01, 0x00 };

{ oxa9, 0x85, 0xA6 };

random wre[3] = { 0x62, OxEA, 0x40 };
hs esn[4] = { 0xED, 0x07, 0x13, 0x95 };
rand wikey[7] = { 0xB7, 0xFC, 0x75, O0x5A,
0xFO, O0xA4, 0x90 };

*/

char WIKEY [8] ;

char WIKEY NEWI[8];

char WRE KEY [8];

void main (void)

{

int

i;

unsigned long auth sig;

WIKEY Generation(manufact,baseid) ;

printf ("WIKEY = ");

for(i=0;1i<8;i++)
printf ("$02x", (unsigned int)WIKEY[i]) ;
printf ("\n") ;

auth sig =

WRE_
WRE_
WRE_
WRE_
WRE_

KEY [0]
KEY [1]
KEY [2]
KEY [3]
KEY [4]

WI_Auth Signature(random challenge,baseid,acre phone) ;
printf ("AUTH SIGNATURE = %051x\n",auth sig);

0xCB;
0x60;
0xF9;
0x9F;
0x5B;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

147

09/13/2000 Common Cryptographic Algorithms Revision D.1

WRE_KEY [5] = 0x15;
WRE_KEY[6] = Ox6F;
WRE_KEY[7] = OxAE;

auth sig = WRE Auth Signature (random wre,baseid,hs esn) ;
printf ("AUTH SIGNATURE = $%051x\n",auth sig);

WIKEY Update (rand wikey,baseid) ;

© 0 N O O b~ WN =

A o o a4 A o
N o o b W N =~ O

18

printf ("WIKEY NEW = ")
for(i=0;1<8;i++)

printf ("$02x", (unsigned int)WIKEY NEWI[i]) ;
printf ("\n") ;

printf ("Enter to exit\n");
getchar () ;

3.2.3. Test Program Output

WIKEY = cb60f99f5bl56fae
AUTH SIGNATURE = 2cfo0l

AUTH SIGNATURE = 12893
WIKEY NEW = 167ca928358cceba

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
148

o O A~ w

10
1"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Common Cryptographic Algorithms Revision D.1

3.3. Basic Data Encryption Test Vector

09/13/2000

3.3.1. Input data

SSD B= 1492 5280 1776 1867
RAND = 1234 ABCD

HOOK =

CDEF 5678

24 octets of mask to be returned

3.3.2. Test Program

#include <stdio.h>
#include "cave.h" /* see
#include "oryx.h" /* see

/* NAM stored data */

Exhibit 2-2

+/

Exhibilt 2-45

unsigned char ESN[4] = { 0xd7, O0x5a, 0x96, Oxec };
unsigned char MIN1([3] = { 0x79, 0x29, 0x71 };

unsigned char A key[8];
unsigned char SSD A NEW[8]
unsigned char SSD B NEW[8]

void pause (void)

, SSD _A[8];
, SSD_B[8];

{
printf ("Enter to continue\n");
getchar () ;

}

void main (void)

{

int i, j;
unsigned long hook;
unsigned char buf [24],

rand[0] = 0x12;
rand[1l] = 0x34;
rand[2] = Oxab;
rand [3] 0xcd;

hook = 0xcdef5678;

SSD_BI[0] = 0x14;
SSD BI[1] = 0x92;
SSD_BI[2] = 0x52;
SSD_BI[3] = 0x80;
SSD_B[4] = 0x17;
SSD_BI[5] = 0x76;
SSD B[6] = 0x18;
SSD BI[7] = 0x67;

printf ("\nSSD B =") ;
for (1 = 0; 1 < 4; i++)
{

printf (" ") ;

rand[4] ;

for (j = 0; J < 2; J++)

{

printf ("$02x", (unsigned int)SSD B[2*i+j]);

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

149

© o N O O B W N =

g g g a0 g o a H B B B B B BB BB W W W WWWWWWWNDNDNDNDNDNDNDNDNDN=S 2 aaaa A A A
O O B W N =2 O © 0N O O B WN =2 O © 0N O GO & WN =~ O © 0N O O & WN =2 O O© 0N O G » WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

}
printf ("\nRAND =") ;

for (1 = 0; 1 < 2; i++)

{

printf (" ") ;
for (j = 0; J < 2; J++)
{

printf ("%$02x", (unsigned int)rand[2*i+j]);
}
printf ("\nHOOK = %$041x %$041x\n", hook >> 16, hook & O0x0000ffff);
pause () ;
printf ("24 octets of mask to be returned");
DataKey = DataKey Generation() ;
printf ("\n\nOutput:\n\n") ;

printf ("\nDataKey = %041x %041x\n", DataKey >> 16,
DataKey & OxOO0O0OQ0ffff);

LTable Generation(rand) ;
printf ("\n\nL:\n\n") ;
for(i = 0; 1 < 16; i++)

{
for (] = 0; j < 16; j++)
{

printf ("%02x ", (unsigned int)L[16*i+j]);

printf ("\n") ;

pause () ;

Data Mask (DataKey, hook, 24, buf);
printf ("\n\nmask:\n\n") ;

for(i = 0; 1 < 2; 1i++)

{

for (] = 0; j < 12; j++)
{
printf ("%02x ", (unsigned int)buf[l12*i+3j]);

printf ("\n") ;

pause () ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
150

Common Cryptographic Algorithms Revision D.1

3.3.3. Test Program Output

09/13/2000

DataKey = 8469 B522

L:

477
15
6C
13
69
C5
4E
17
8A
EB
9E
E1l
89
F5
F8
5B

D1
83
66
06
6B
86
76
A8
1C
B3
9A
DC
1E
67
DF
5C

mask

57
EO

Fé6
4D

88
04
33
62
79
6D
00
78
BB
C9
EF
BD
63
CF
1D
21

c2
73

BC
A3
53
FD
40
FO
9F
46
08
72
B7
BS
D6
45
58
61

03
80

3B
96
7B
ocC
36
2C
7E
90
Fé6
52
8D
3E
91
44
9B
85

7C
FF

TF
1F
DE
6F
5D
65
07
Co
4C
A0
E6
37
92
DB
34
19

78
2A

25
09
2D
OE
E8
7D
49
41
4B
0A
A4
59
D4
22
ED
84

2F
4D

30
B6
20
OF
74
5F
48
BF
27
ES
D5
CDh
11
FE
0B
DO

CcC
2F

16
A7
F1
4D
FC
8B
95
94
28
D8
82
EC
EE
55
D7
3C

8B
8D

CE
70
8C
3D
B8
BE
75
97
1A
Cé
F3
02
9C
Cc7

26

3E
74

A9
29
4F
14
51
8F
71
D3
03
3F
77
80
12
56
99
87

E4
8E

9D
D2
ES
32
10
DA
6E
43
C4
AF
54
81
A5
Bl
TA
98

0B
DB

FF
2E
93
Al
DS
B4
CccC
01
FA
05
42
AC
A6
AD
Cl
BO

FB
60
39
50
F2
4A
68
C8
E7
CA
B2
2A
3A
F4
7C
F7

2F
2B
8E
E2
CB
BA
38
AB
B5
C3
18
31
c2
F9
EO
23

E4
5A
6A
1B
5E
64
0D
DD
A2
AE
73
EA
35
57
E3
24

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
151

N

© o N o g »

11
12
13
14
15
16

17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

09/13/2000 Common Cryptographic Algorithms Revision D.1

3.4. Enhanced Voice and Data Privacy Test Vectors

3.4.1. Input Data

Data buffer = B6 2D A2 44 FE 9B 23 AB
Vector 1:

CMEA key k0,. k7= a0 7b 1c d1 02 75 69 14
sync = 3d 00 a2 00

Vector 2:

CMEA key kO,. k7 = FO 06 A8 5A 05 CD B3 2A
sync = ff 00 {f 00

3.4.2. Test Program

3.4.2.1. Main program file

/*

EPE test file "main.c"

Explicitly contains code for generating vector sets 1 (DTC key
schedule) and 2 (DCCH key schedule). These first two sets also test
SCEMA. The key schedules are needed for generating the remaining
vector sets. However,none of the remaining sets depend upon other sets
being generated.

*/

#include <stdio.h>
#include "cave.h"
#include "scema.h"

void pause (void)

{
printf ("Enter to continue\n") ;
getchar () ;

}

void main (void)

{

unsigned int i;
/* test plaintext */

const unsigned char buf[8] = {0xbé,0x2d,0xa2, 0x44,
0xfe, 0x9b, 0x23, Oxab};

unsigned char testBuf [MaxMessageOctetSize];

unsigned char testBufTwo [MaxFrameOctetSizel ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
152

© 0 N O g B W N =

o O g g g g g g g g o a b B B B B B B BB B W W W W W W WWWWNDNDNDDNDNDNDNDNRNDNDN=S 2 A a s A A A
- O © © N O O H» W N =2 O © © N O G & WN =2 O © ® N O G H WN -2 O © 0 ~NO O B WN =2 O © 0 ~N O O b WN = O

/* cryptosync

Common Cryptographic Algorithms Revision D.1

unsigned char syncl [4]
unsigned char sync2[4]

/* vector set 1 */

cmeakey [0
cmeakey [1
cmeakey [2
cmeakey [3
cmeakey [4
cmeakey [5
cmeakey [6
cmeakey [7

]
]
]
]
]
]
]
]

printf ("\nVector Set 1 - DTC Key Generation and SCEMA\n\n");

0xAQ;
0x7B;
0x1C;
0xD1;
0x02;
0x75;
0x69;
0x14;

DTC_Key Generation() ;

printf ("

for (1 = 0;
printf (" %02x", (unsigned int)cmeakey[i]) ;

i < 8;

printf ("\n") ;

printf ("

for (1 = 0;
printf (" %02x", (unsigned int) (dtcScheds) ->scemaKey [i]) ;

DTC scemaKey

i < 8;

printf ("\n") ;

printf ("

printf (" %$02x %$02x %02x %$02x\n", (unsigned int)syncl[0],
(unsigned int)syncl[1], (unsigned int)syncl[2],

1++4)

1++4)

{ 0x3d,0x00,0xa2,0x00 };
{ oxff,0x00,0xff,0x00 };

(CaveKeyl)

(meaning is air interface specific)

DTC CMEA key =");

=");

sync =");

(unsigned int)syncl[3]);

for (i = 0;
testBuf [i] = buf[i];

printf ("
for (1 =0
printf ("

i < SixOctets; 1i++)

Input

i < SixOctets; i++)

$02x", (unsigned int)testBuf[i]);

printf ("\n") ;

SCEMA (testBuf, SixOctets, syncl, 0,0, ENCRYPTING, dtcScheds) ;

printf ("

for (1 = 0;
printf (" %02x", (unsigned int)testBuf[i]);

DTC SCEMA Output

i < SixOctets; i++)

printf ("\n") ;

pause () ;

/* vector set 2 */

cmeakey [0
cmeakey [1
cmeakey [2
cmeakey [3
cmeakey [4
cmeakey [5

]
]
]
]
]
]

0xfo0;
0x06 ;
0xa8;
0x5a;
0x05;
0Oxcd;

=");

=");

*/

09/13/2000

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

153

© 0 N O O B WN =

o O g g g g g g g g o a b B B B B B B BB B W W W W W W WWWWNDNDNDDNDNDNDNDNRNDNDN=S 2 s A A A A A
- O © 0 N O OO & W N =2 O © © N O G & WN =2 0 © ® N O G B WN -2 O © 0 ~NO O B WN = O © 0N O O b WN = O

09/13/2000

/*

Note: None of these remaining tests are mutually dependent,

cmeakey[6] = 0xb3;
cmeakey [7] 0x2a;

Common Cryptographic Algorithms Revision D.1

printf ("\nVector Set 2 - DCCH Key Generation and SCEMA\n\n") ;

DCCH Key Generation();

printf (" DCCH CMEA key =");
for (1 = 0; 1 < 8; 1i++)
printf (" %02x", (unsigned int)cmeakey[i]) ;
printf ("\n") ;
printf (" DCCH scemaKey (CaveKeyl)=");
for (1 = 0; 1 < 8; i++)
printf (" %02x", (unsigned int) (dcchScheds) ->scemaKey[i]) ;
printf ("\n") ;
printf (" sync
printf (" %$02x %$02x %02x %$02x\n", (unsigned int)sync2[0],

(unsigned int)sync2[1
(unsigned int)sync2[3

1,
1)

for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf [i];

printf ("

for (1 = 0; 1 < SixOctets; i++)
printf ("

printf ("\n") ;

SCEMA (testBuf, SixOctets, sync2, 0, 0, ENCRYPTING, dcchScheds) ;

printf (" DCCH SCEMA Output
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;
pause () ;

thus be selectively disabled.

*/
/*

Vector Set 3 - SCEMA KSG */

#include "vs3scemaKSG.h"

/* Vector Set 4 - Long Block Encryptor */

#include "vs4longBlock.h"

/* Vector Set 5 - Short Block Encryptor */

#include "vs5shortBlock.h"

/* Vector Set 6 - Enhanced Message Encryption */

#include "vs6enhMsgEnc.h"

/* Vector Set 7 - Enhanced Voice Privacy */

#include "vs7enhVoicePriv.h"

/*

Vector Set 8 - Enhanced Data Mask Generation */

#include "vs8enhDataMask.h"

}

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

(unsigned int)sync2[2],

Input

$02x", (unsigned int)testBuf[i]) ;

and can

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

154

© © N O a b~ W N -

O g a0 a0 a0 g o a0 a0 a b B B B BB BB B DD DB W W W W W W WWWWNDNDNDDNDNDNDNDNDNDN= 2 A A A A A
O © © N O O A WN =2 O © ©® N O g h WN 20 © 0N GO & WN =~ O © 0N O O B WN =2 O © © N O b W N = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

3.4.2.2. Vector set 3

/* Vector Set 3 - SCEMA KSG "vs3scemaKSG.h" */
printf ("\nVector Set 3 - SCEMA KSG\n\n");

/* Voice content, Reverse Channel, 3-octet input, 8-octet output */
printf ("\nVoice content, Reverse Channel, 3-octet input, 8-octet
output\n\n") ;

for (i = 0; i1 < ThreeOctets; i++)
testBuf [i] = buf [i];

printf (" Input =");
for (i = 0; i < ThreeOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]) ;
printf ("\n") ;

SCEMA KSG (testBufTwo, EightOctets, testBuf, ThreeOctets,
VoiceContent,dtcScheds, ReverseChannel) ;

printf ("SCEMA KSG Output =");
for (i = 0; i < EightOctets; i++)

printf (" %02x", (unsigned int)testBufTwol[i]) ;
printf ("\n\n") ;

/* Voice content, Reverse Channel, 6-octet input, 6-octet output */
printf ("\nVoice content, Reverse Channel, 6-octet input, 6-octet
output\n\n") ;

for (i = 0; 1 < SixOctets; i++)
testBuf [i] = buf [i];
printf (" Input =");
for (i = 0; i < SixOctets; i++)
printf (" %02x", (unsigned int) testBuf[i]) ;
printf ("\n") ;

SCEMA_ KSG (testBufTwo, SixOctets, testBuf, SixOctets,
VoiceContent,dtcScheds, ReverseChannel) ;

printf ("SCEMA KSG Output =");
for (i = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBufTwol[i]) ;
printf ("\n\n") ;

/*

Voice content, Reverse Channel, 6-octet input,

3-octet requested output, 6 octets delivered

*/

printf ("\nVoice content, Reverse Channel, 6-octet input,\n");
printf (" 3-octet requested output, 6-octets delivered\n\n");

for (i = 0; i1 < SixOctets; i++)

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
155

© o N O g B W N =

o O g g a0 g g g g a0 o a b B B B B B B BB B W W W W W W WWWWwNDNDNDDNDNDNDNDNDNRNDNDN=2 2 s A A A A A
- O © 0 N O OO H» W N =2 O © © N O G & WN =2 O O© ®NO G s WN -2 O © 0N O B WN - O © 0N O O b WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

testBuf [1] = buf[i];
printf (" Input =");
for (1 = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

SCEMA_KSG (testBufTwo, ThreeOctets, testBuf, SixOctets,
VoiceContent,dtcScheds, ReverseChannel) ;

printf ("SCEMA KSG Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBufTwol[i]) ;

printf ("\n\n") ;

pause () ;

printf ("\nVector Set 3 - SCEMA KSG cont'd\n\n");

/* Message content, Reverse Channel, 6-octet input, 6-octet output */
g p p
printf ("\nMessage content, Reverse Channel, 6-octet input, 6-octet

output\n\n") ;

for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf[i];
printf (" Input =");
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

SCEMA KSG (testBufTwo, SixOctets, testBuf, SixOctets,
MessageContent, dtcScheds, ReverseChannel) ;

printf ("SCEMA KSG Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBufTwo[i]) ;

printf ("\n\n") ;
/* Message content, Forward Channel, 6-octet input, 6-octet output */

printf ("\nMessage content, Forward Channel, 6-octet input, 6-octet
output\n\n") ;

for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf[i];
printf (" Input =");
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

SCEMA KSG (testBufTwo, SixOctets, testBuf, SixOctets,
MessageContent, dtcScheds, ForwardChannel) ;

printf ("SCEMA KSG Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBufTwol[i]) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
156

a A W N =

10
1"
12
13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

52
53
54
55
56
57
58
59

/*

Common Cryptographic Algorithms Revision D.1

printf ("\n\n") ;

pause () ;

3.4.2.3. Vector set 4

09/13/2000

Vector Set 4 - Long Block Encryptor "vs4longBlock.h" */
printf ("\nVector Set 4 - Long Block Encryptor\n\n");

ncr ion/Decr ion oice content, Reverse anne
/* E yption/D ypti (Voi tent, R Ch 1)
printf ("\nEncryption/Decryption (Voice content, Reverse

Channel) \n\n") ;

for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf [i];
printf (" Input =");
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Long Block Encryptor (testBuf,VoiceContent, ENCRYPTING,
dtcScheds, ReverseChannel) ;

printf ("Long Block Encryptor Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Long Block Encryptor (testBuf,VoiceContent, DECRYPTING,
dtcScheds, ReverseChannel) ;

printf ("Long Block Decryptor Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);

printf ("\n\n") ;

/* Encryption (Message Content,Reverse Channel) */

printf ("\nEncryption (Message Content,Reverse Channel)\n\n");

*/

for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf[i];
printf (" Input ="); for (i = 0; i1 < SixOctets;
1++4)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Long Block Encryptor (testBuf,MessageContent, ENCRYPTING,
dtcScheds, ReverseChannel) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

157

© 0 N O O B W N =

N RN NN DNMDNDNRNNRNNIRN 22 a4 a4 a4 a3 o a oA o
© 0 N O O B WN =2 O © 0N O O bh WN =2 O

30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

09/13/2000 Common Cryptographic Algorithms Revision D.1

printf ("Long Block Encryptor Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);

printf ("\n\n") ;

/* Encryption (Voice Content,Forward Channel) */
printf ("\nEncryption (Voice Content,Forward Channel)\n\n") ;

for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf[i];
printf (" Input =");
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Long Block Encryptor (testBuf,VoiceContent, ENCRYPTING,
dtcScheds, ForwardChannel) ;

printf ("Long Block Encryptor Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);

printf ("\n\n") ;

pause () ;

3.4.2.4. Vector set 5

/* Vector Set 5 - Short Block Encryptor "vsSshortBlock.h"

Note: The last octets of the decrypted buffers may not match the
original input buffers' last octets. This is legitimate and comprises a
test to ensure that the output clean up code is working to zero out non-
content bearing bits.

*/

printf ("\n\nVector Set 5 - Short Block Encryptor\n") ;

/* Encryption/Decryption (47 bits,Voice content,Reverse Channel) */

printf ("\nEncryption/Decryption (47 bits, Voice content,Reverse
Channel) \n\n") ;

for (1 = 0; 1 < SixOctets; i++)
{
testBuf [i] = buf[i];
testBufTwo[i] = bufl[i + 1];

}

printf (" SB Data Mask Input =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
158

© 0 N O g B W N =

g g g o0 a0 a a b B B B B B BB BB W W W WWWWWWWNDNDNDNDNDNDNDNDNDN=S S aaa A a A A
O g B W N =2 O © 0N O O B WN =2 O © 0N O GO & WN =~ O © 0N O O & WN =2 O O© 0N O O &~ WN = O

58
59
60
61

Common Cryptographic Algorithms Revision D.1

Short Block Encryptor (testBuf,47,VoiceContent, testBufTwo,
ENCRYPTING, dtcScheds, ReverseChannel) ;

printf ("SB Data Mask Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Short Block Encryptor (testBuf,47,VoiceContent, testBufTwo,
DECRYPTING, dtcScheds, ReverseChannel) ;

printf ("SB Data Mask Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

/* Encryption/Decryption (17 bits,Voice content,Reverse Channel)

printf ("\nEncryption/Decryption (17 bits, Voice content,Reverse

Channel\n\n") ;
for (1 = 0; 1 < SixOctets; i++)
{
testBuf [i] = buf[i];
testBufTwo[i] = bufl[i + 1];

}

printf (" SB Data Mask Input =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Short Block Encryptor (testBuf,17,VoiceContent, testBufTwo,
ENCRYPTING, dtcScheds, ReverseChannel) ;

printf ("SB Data Mask Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Short Block Encryptor (testBuf,17,VoiceContent, testBufTwo,
DECRYPTING, dtcScheds, ReverseChannel) ;

printf ("SB Data Mask Output =");

for (1 = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;
pause () ;

/* Encryption/Decryption (16 bits,Voice content,Reverse Channel)

printf ("\nEncryption/Decryption (16 bits, Voice content,Reverse

Channel\n\n") ;

for (1 = 0; 1 < SixOctets; i++)

{

testBuf [i] = buf[i];

09/13/2000

*/

*/

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
159

© 0 N O g B W N =

N NN NDNMDNDNRNIR 232 2 a4 a4 a4 a2 a3 a o
W N OO O B WN =2 O © 0N O O bh WN = O

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

09/13/2000 Common Cryptographic Algorithms Revision D.1

testBufTwo[i] = bufl[i + 1];

}

printf (" SB Data Mask Input =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Short Block Encryptor (testBuf,16,VoiceContent, testBufTwo,
ENCRYPTING, dtcScheds, ReverseChannel) ;

printf ("SB Data Mask Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Short Block Encryptor (testBuf,16,VoiceContent, testBufTwo,
DECRYPTING, dtcScheds, ReverseChannel) ;

printf ("SB Data Mask Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

/* Encryption/Decryption (2 bits,Voice content,Reverse Channel)

printf ("\nEncryption/Decryption (2 bits, Voice content,Reverse

Channel\n\n") ;
for (1 = 0; 1 < SixOctets; i++)
{
testBuf [i] = buf[i];
testBufTwo[i] = buf[i + 1];

}

printf (" SB Data Mask Input =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Short Block Encryptor (testBuf,2,VoiceContent, testBufTwo,
ENCRYPTING, dtcScheds, ReverseChannel) ;

printf ("SB Data Mask Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Short Block Encryptor (testBuf,2,VoiceContent, testBufTwo,
DECRYPTING, dtcScheds, ReverseChannel) ;

printf ("SB Data Mask Output =");

for (1 = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;
pause () ;

/* Encryption,47 bits,Voice content,Forward Channel */

*/

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
160

© o N O O B W N =

a o a &5 B B B B B B B DB DWW WWWW W WWWNDNDNDNDNDNDNDRNDNIDN= 22 A a3 s A A A
N = ©O © © N O OO & W N =2 O © ® N O g & WN = O © 0 ~NO O B WN =2 O © 0 ~N O O b WN = O

54
55
56
57
58
59
60
61

*
~

Common Cryptographic Algorithms Revision D.1 09/13/2000

printf ("\nEncryption,47 bits,Voice content,Forward Channel\n\n") ;

for (1 = 0; 1 < SixOctets; i++)
{
testBuf [i] = buf[i];
testBufTwo[i] = buf[i + 1];

}

printf (" SB Data Mask Input =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Short Block Encryptor (testBuf,47,VoiceContent, testBufTwo,
ENCRYPTING, dtcScheds, ForwardChannel) ;

printf ("SB Data Mask Output =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

/* Encryption,47 bits,Message content,Forward Channel */

printf ("\nEncryption,47 bits,Message content,Forward Channel\n\n") ;

for (1 = 0; 1 < SixOctets; i++)
{
testBuf [i] = buf[i];
testBufTwo[i] = bufl[i + 1];

}

printf (" SB Data Mask Input =");

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Short Block Encryptor (testBuf,47,MessageContent, testBufTwo,
ENCRYPTING, dtcScheds, ForwardChannel) ;

printf ("SB Data Mask Output =");

for (1 = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;
/*

Encryption,47 bits,Message content,Forward Channel,different entropy

printf ("\nEncryption,47 bits,Message content,Forward

Channel,different entropy\n\n");

for (1 = 0; 1 < SixOctets; i++)
{
testBuf [i] = buf[i];
testBufTwo[i] = ~buf[i + 171;

}

printf (" SB Data Mask Input =");

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
161

© 0 N O O b~ WN =

2 a4 o a o
A W N = O

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

09/13/2000 Common Cryptographic Algorithms Revision D.1

/*

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Short Block Encryptor (testBuf,47,MessageContent, testBufTwo,
ENCRYPTING, dtcScheds, ForwardChannel) ;

printf ("SB Data Mask Output =");

for (1 = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;
pause () ;

3.4.2.5. Vector set 6

Vector Set 6 - Enhanced Message Encryption "vséenhMsgEnc.h"

Note: The last octets of the decrypted buffers may not match the

original input buffers'
test to ensure that the output clean up code is working to zero out non-

last octets. This is legitimate and comprises a

content bearing bits.

*/

printf ("\n\nVector Set 6 - Enhanced Message Encryption\n") ;
/* 48 bits */

printf ("\n48 bits\n\n");

printf (" Message input =");
for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf[i];
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;
for (1 = 0; 1 < 4; i++)
testBufTwo[i] = ~buf[i];

/* Encrypting */
Enhanced Message Encryption(testBuf,48,DCCH, testBufTwo, TestMsgType,
ENCRYPTING, CAVEKeyl, ForwardChannel) ;

printf (" Encryptor output =");
for (1 = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

/* Decrypting */
Enhanced Message Encryption(testBuf,48,DCCH, testBufTwo, TestMsgType,
DECRYPTING, CAVEKeyl, ForwardChannel) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
162

© 0 N O g B W N =

o O g g g g g g g g o a b B B B B B B BB B W W W W W W W WWWNDNDNDDNDNDNDNDNDNRNDNDN=S 2 A a A A A A A
- O © © N O O H» W N =2 O © © N O G & WN =2 O O© ®N O G H WN =2 O © 0 ~NO OO B WN = O © 0 ~N O O b WN = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

printf (" Decryptor output =");
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;
pause () ;

/* 256 Octets (2047 bits) */

printf ("\n256 Octets (2047 bits)\n\n");

printf (" Last P/O Message input =");
for (1 = 0; 1 < 256; 1i++)
testBuf [i] = buf[i % EightOctets];

for (1 = 0; i < EightOctets; i++)
printf (" %02x", (unsigned int)testBuf[i + 248]);
printf ("\n") ;
for (1 = 0; 1 < 4; i++)
testBufTwo [i] = ~buf[i];
/* Encrypting */
Enhanced Message Encryption(testBuf,2047,DCCH, testBufTwo,
TestMsgType, ENCRYPTING, CAVEKeyl, ForwardChannel) ;
printf ("Last P/O Encryptor output =");
for (1 = 0; i < EightOctets; i++)
printf (" %02x", (unsigned int)testBuf[i + 248]);
printf ("\n") ;
/* Decrypting */
Enhanced Message Encryption(testBuf,2047,DCCH, testBufTwo,
TestMsgType, DECRYPTING, CAVEKeyl, ForwardChannel) ;
printf ("Last P/O Decryptor output =");
for (1 = 0; i < EightOctets; i++)

printf (" %02x", (unsigned int)testBuf[i + 248]);
printf ("\n") ;

pause () ;

/* 44 bits */
printf ("\n44 bits\n\n");
Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
163

© o N O O B WN =

o O g g g g g g o g o a b B B B B B B BB B W W W W W W WWWWNDNDNDDNDNDNDNDNDNRNDNDN=S 2 A a A A A A A
- O © © N O OO H» W N =2 O © © N O G & WN =2 O O© ® N O G H WN -2 O © 0~NO O B WN = O © 0 ~N O O b WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

printf (" Message input =");
for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf[i];
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

for (i = 0; 1 < 4; i++)
testBufTwo[i] = ~buf[i];

/* Encrypting */
Enhanced Message Encryption(testBuf, 44,DCCH, testBufTwo, TestMsgType,
ENCRYPTING, CAVEKeyl, ForwardChannel) ;

printf (" Encryptor output =");
for (1 = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

/* Decrypting */
Enhanced Message Encryption(testBuf, 44,DCCH, testBufTwo, TestMsgType,
DECRYPTING, CAVEKeyl, ForwardChannel) ;

printf (" Decryptor output =");
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;
pause () ;

/* 48 bits, Forward Channel -> Reverse Channel */

printf ("\n48 bits, Forward Channel -> Reverse Channel\n\n");

printf (" Message input =");
for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf[i];
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

for (1 = 0; 1 < 4; i++)
testBufTwo[i] = ~buf[i];

/* Encrypting */
Enhanced Message Encryption(testBuf,48,DCCH, testBufTwo, TestMsgType,
ENCRYPTING, CAVEKeyl, ReverseChannel) ;

printf (" Encryptor output =");
Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
164

© o N O g B W N =

o O g g g g g g g g o a b B B B B B B BB B W W W W W W W WWWNDNDNDDNDNDNDNDNRNDNDN=S 2 A a A A A A
- O © 0 N O OO H» W N =2 O © © N O G & WN =2 O O© ® N O G H WN = O © 0N O B WN = O © 0 ~N O O b WN = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

/* 48 bits, DCCH -> DTC */

printf ("\n48 bits, DCCH -> DTC\n\n");

printf (" Message input =");
for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf [i];
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;
for (1 = 0; 1 < 4; i++)
testBufTwo [i] = ~buf[i];

/* Encrypting */
Enhanced Message Encryption(testBuf,48,DTC, testBufTwo, TestMsgType,
ENCRYPTING, CAVEKeyl, ForwardChannel) ;

printf (" Encryptor output =");
for (1 = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

/* 48 bits, different RAND */

printf ("\n48 bits, different RAND\n\n");

printf (" Message input =");
for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf[i];
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

for (1 = 0; 1 < 4; i++)
testBufTwo[i] = buf[i];

/* Encrypting */
Enhanced Message Encryption(testBuf,48,DCCH, testBufTwo, TestMsgType,
ENCRYPTING, CAVEKeyl, ForwardChannel) ;

printf (" Encryptor output =");
for (1 = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

/* 44 bits, different RAND */
printf ("\n44 bits, different RAND\n\n");
Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
165

© o N O O B WN =

a g & b B B B B B B DB DB W W WWWWWWWWNNDNDNDDNDNDNDNDNDND=2 2 2 A A A A A
- O © © N O OO WN =2 O © 0N O G & WN =2 O O© ®N O g & WN = O © 0 ~NO O b WN = O

52

53
54
55
56
57
58
59

09/13/2000 Common Cryptographic Algorithms Revision D.1

/*

/*

printf (" Message input =");
for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf[i];
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

for (i = 0; 1 < 4; i++)
testBufTwo[i] = buf[i];

/* Encrypting */

Enhanced Message Encryption(testBuf, 44,DCCH, testBufTwo, TestMsgType,

ENCRYPTING, CAVEKeyl, ForwardChannel) ;

printf (" Encryptor output =");
for (1 = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

/* 48 bits, different Message Type */

printf ("\n48 bits, different Message Type\n\n");

printf (" Message input =");
for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf[i];
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;
for (1 = 0; 1 < 4; i++)
testBufTwo [i] = ~buf[i];

Encrypting */
Enhanced Message Encryption(testBuf,48,DCCH, testBufTwo,
TestMsgType2, ENCRYPTING, CAVEKeyl,

ForwardChannel) ;
printf (" Encryptor output =");
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;
pause () ;

3.4.2.6. Vector set 7

Vector Set 7 - Enhanced Voice Privacy "vs7enhVoicePriv.h"

Note 1: The current coder standards' bit allocations as listed in

TIA/EIA-136-510 are: The Number of {Class 1A bits, remaining bits, CRC
bits} for 136 speech coders are: 136-410 ACELP {48, 100, 7}, 136-420

VSELP {12, 147, 7}, and 136-430 US1 {81, 163, 8}.

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
166

© 0 N O O b~ WN =

o O g g g g g g g g o a b B B B B B B BB B W W W W W W W WWWNDNDNDDNDNDNDNDNDNRNDNDN=S 2 A a A A A A
- O © 0 N O OO H» W N =2 O © © N O G & WN =2 O O© ® N O G H WN =2 O © 0N O B WN = O © 0 ~N O O b WN = O

Common Cryptographic Algorithms Revision D.1 09/13/2000

Note 2: The last octets of the decrypted buffers may not match the
original input buffers' last octets. This is legitimate and comprises a
test to ensure that the output clean up code is working to zero out non-
content bearing bits.

*/
printf ("\n\nVector Set 7 - Enhanced Voice Privacy\n");
/* 48 Class 1A bits, 100 remaining bits */
printf ("\n48 Class 1A bits, 100 remaining bits\n\n");

printf ("1A/Rem. bits input =");

for (1 = 0; 1 < SixOctets; i++)

testBuf [1] = buf[i];
for (1 = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]);
printf (" /") ;

for (i = 0; 1 < ((100 - 1) / 8) + 1; i++)
testBufTwo[i] = ~buf[i % EightOctets];

for (i = 0; 1 < ((100 - 1) / 8) + 1; i++)
printf (" %02x", (unsigned int)testBufTwo[i]) ;
printf ("\n") ;

/* Encrypting */
Enhanced Voice Privacy(CoderVersionZero, testBuf, 48, testBufTwo, 100,
ENCRYPTING, CAVEKeyl, ForwardChannel) ;

printf (" Encryptor output =");
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf (" /") ;
for (i = 0; 1 < ((100 - 1) / 8) + 1; i++)
printf (" %02x", (unsigned int)testBufTwol[i]) ;
printf ("\n") ;

/* Decrypting */
Enhanced Voice Privacy(CoderVersionZero, testBuf, 48, testBufTwo, 100,
DECRYPTING, CAVEKeyl, ForwardChannel) ;

printf (" Decryptor output =");
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf (" /") ;
for (i = 0; 1 < ((100 - 1) / 8) + 1; i++)
printf (" %02x", (unsigned int)testBufTwo[i]) ;
printf ("\n") ;
pause () ;

/* 81 Class 1A bits, 163 remaining bits */

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
167

© o N O g b~ WN -

o O g g g g g g o a0 o a b B B B B B B BB B W W W W W W W WWWNDNDNDDNDNDNDNDNDNRNDNDN=S 2 A A A A A
- O © © N O O H» W N =2 O © © N O G & WN =2 O O© ® N O G H WN -2 O © 0 ~NO O B WN = O © 0N O O b WN = O

09/13/2000 Common Cryptographic Algorithms Revision D.1

printf ("\n81 Class 1A bits, 163 remaining bits\n\n");
printf ("1A/Rem. bits input =");

for (1 = 0; 1 < ((81 - 1) / 8) + 1; 1i++)
testBuf [i] = buf[i % EightOctets];

for (1 = 0; 1 < ((81 - 1) / 8) + 1; 1i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf (" /") ;

for (i = 0; 1 < ((163 - 1) / 8) + 1; i++)
testBufTwo[i] = ~buf[i % EightOctets];

for (i = 0; 1 < ((163 - 1) / 8) + 1; i++)
printf (" %02x", (unsigned int)testBufTwo[i]) ;
printf ("\n") ;

/* Encrypting */
Enhanced Voice Privacy(CoderVersionZero, testBuf, 81, testBufTwo, 163,
ENCRYPTING, CAVEKeyl, ForwardChannel) ;
printf (" Encryptor output =");
for (1 = 0; 1 < ((81 - 1) / 8) + 1; 1i++)
(

printf (" %02x", (unsigned int)testBuf[i]);
printf (" /") ;

printf (" %02x", (unsigned int)testBufTwol[i]) ;

for (i = 0; 1 < ((163 - 1) / 8) + 1; i++)
printf ("\n") ;

/* Decrypting */
Enhanced Voice Privacy(CoderVersionZero, testBuf, 81, testBufTwo, 163,
DECRYPTING, CAVEKeyl, ForwardChannel) ;
printf (" Decryptor output =");
for (1 = 0; 1 < ((81 - 1) / 8) + 1; 1i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf (" /") ;
for (i = 0; 1 < ((163 - 1) / 8) + 1; i++)
printf (" %02x", (unsigned int)testBufTwo[i]) ;
printf ("\n") ;
pause () ;
/* 12 Class 1A bits, 147 remaining bits */
printf ("\nl2 Class 1A bits, 147 remaining bits\n\n");

printf ("1A/Rem. bits input =");

A

((12 - 1) / 8) + 1; 1i++)
buf [1 % EightOctets];

for (1 = 0; 1
testBuf [i]

for (1 = 0; 1 < ((12 - 1) / 8) + 1; 1i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf (" /") ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
168

© o N O g B W N =

BABA W W W WWWWWWWNNDNDNDNDNDNDNDNDNDN=2 22 2 A A A A A
- O © © N O O A W N =2 O © ©® N O g & WN = O © 0N O O b WN = O

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Common Cryptographic Algorithms Revision D.1

for (i = 0; 1 < ((147 - 1) / 8) + 1; i++)
testBufTwo[i] = ~buf[i % EightOctets];

for (i = 0; 1 < ((147 - 1) / 8) + 1; i++)
printf (" %02x", (unsigned int)testBufTwol[i]) ;

printf ("\n") ;

/* Encrypting */

09/13/2000

Enhanced Voice Privacy(CoderVersionZero, testBuf,12,testBufTwo, 147,

ENCRYPTING, CAVEKeyl, ForwardChannel) ;

printf (" Encryptor output =");

for (1 = 0; 1 < ((12 - 1) / 8) + 1; 1i++)
(

printf (" %02x", (unsigned int)testBuf[i]);
printf (" /") ;
for (i = 0; 1 < ((147 - 1) / 8) + 1; i++)
printf (" %02x", (unsigned int)testBufTwol[i]) ;
printf ("\n") ;

/* Decrypting */

Enhanced Voice Privacy(CoderVersionZero, testBuf,12,testBufTwo, 147,

DECRYPTING, CAVEKeyl, ForwardChannel) ;

printf (" Decryptor output =");

for (1 = 0; 1 < ((12 - 1) / 8) + 1; 1i++)
(

printf (" %02x", (unsigned int)testBuf[i]) ;
printf (" /") ;
for (i = 0; 1 < ((147 - 1) / 8) + 1; i++)
printf (" %02x", (unsigned int)testBufTwol[i]) ;
printf ("\n") ;
pause () ;

/* Reverse Channel, 48 Class 1A bits, 100 remaining bits */

printf ("\nReverse Channel, 48 Class 1A bits, 100 remaining
bits\n\n") ;

printf ("1A/Rem. bits input =");

for (1 = 0; 1 < SixOctets; i++)
testBuf [1] = buf[i];
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);

printf (" /") ;

for (i = 0; 1 < ((100 - 1) / 8) + 1; i++)
testBufTwo[i] = ~buf[i % EightOctets];

for (i = 0; 1 < ((100 - 1) / 8) + 1; i++)
printf (" %02x", (unsigned int)testBufTwo[i]) ;

printf ("\n") ;

/* Encrypting */

Enhanced Voice Privacy(CoderVersionZero, testBuf, 48, testBufTwo, 100,

ENCRYPTING, CAVEKeyl, ReverseChannel) ;

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

169

© o N O O B W N =

09/13/2000 Common Cryptographic Algorithms Revision D.1

- o
_—)

-
N

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

33

34
35

36
37
38
39
40
41

42

43
44
45
46
47
48
49
50

printf (" Encryptor output =");
for (1 = 0; 1 < SixOctets; i++)
printf (" %02x", (unsigned int)testBuf[i]);
printf (" /") ;
for (i = 0; 1 < ((100 - 1) / 8) + 1; i++)
printf (" %02x", (unsigned int)testBufTwol[i]) ;
printf ("\n") ;

3.4.2.7. Vector set 8

/* Vector Set 8 - Enhanced Data Mask Generation "vs8enhDataMask.h"
printf ("\nVector Set 8 - Enhanced Data Mask Generation\n\n");
Enhanced Data Mask (testBuf, 0x87654321, SixOctets, CAVEKeyl);
printf ("Enhanced Data Mask Output =");
for (1 = 0; 1 < SixOctets; i++)

printf (" %02x", (unsigned int)testBuf[i]);
printf ("\n") ;

Enhanced Data Mask (testBuf,

0x87654321, 3, CAVEKeyl);

printf (" Output,with short Mask =");
for (1 = 0; 1 < 3; 1i++)
printf (" %02x", (unsigned int)testBuf[i]);

printf ("\n\n") ;

pause () ;

3.4.3. Test Program Input and Output

Vector Set 1 - DTC Key Generation and SCEMA

DTC CMEA key = a0 7b 1c dl1 02 75 69 14
DTC scemaKey (CaveKeyl) = 5d ed ad 53 5b 4a b9 fc
sync = 3d 00 a2 00
Input = b6 2d a2 44 fe 9b
DTC SCEMA Output = 63 f£0 21 7a 3c 97
Vector Set 2 - DCCH Key Generation and SCEMA
DCCH CMEA key = f0 06 a8 5a 05 cd b3 2a
DCCH CMEA key = f0 06 a8 5a 05 cd b3 2a
DCCH scemaKey (CaveKeyl)= b6 df 9a d0 6e 5a 3d 14
DCCH scemaKey (CaveKeyl)= b6 df 9a d0 6e 5a 3d 14
sync = ££ 00 f££f 00
Input = b6 2d a2 44 fe 9b
DCCH SCEMA Output = 4c 3d 77 13 e9 a0

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
170

10
1"

12
13
14

15

16
17

18

19

20
21
22

23

24

25
26
27
28

29

30
31
32

33

34
35

Vector Set

Common Cryptographic Algorithms Revision D.1 09/13/2000

3 - SCEMA KSG

Voice content, Reverse Channel, 3-octet input,

Input = be 2d a2

SCEMA KSG Output = f4 bc le 9b 27 al 54 fa

Voice content,

SCEMA KSG Output

Voice content,

Input = b6 2d a2 44 fe 9b
26 08 0c fa d2 7d

6-octets delivered

Input = b6 2d a2 44 fe 9b

SCEMA KSG Output = 26 08 0c fa d2 7d

Reverse Channel, 6-octet input,

Reverse Channel, 6-octet input,

8-octet output

6-octet output

3-octet requested output,

Message content, Reverse Channel, 6-octet input, 6-octet output

Input = b6 2d a2 44 fe 9b

SCEMA KSG Output = df 39 6c 92 c8 63

Message content, Forward Channel, 6-octet input, 6-octet output

Input = b6 2d a2 44 fe 9b

SCEMA KSG Output = 8c a4 9a f5 54 53

Vector Set

4 - Long Block Encryptor

Encryption/Decryption (Voice content, Reverse Channel)

Long Block
Long Block

Encryption

Long Block

Encryption

Long Block

Input = b6 2d a2 44 fe
Encryptor Output 59 fe 84 59 ec
Decryptor Output = b6 2d a2 44 fe

(Message Content,Reverse Channel)

Input = b6 2d a2 44 fe
Encryptor Output 53 7e d4 c6 37

(Voice Content,Forward Channel)

Input = b6 2d a2 44 fe
Encryptor Output = bd 5e 36 a5 8c

9b
18
9b

9b
98

9b
07

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

171

N o g b

10
11
12

13

14
15
16
17

18

19
20
21
22

23

24
25
26

27

28
29
30

31

32
33
34

09/13/2000

Vector Set 5 -

Encryption/Decryption

SB Data Mask Input = b6
SB Encryptor Output = af
SB Decryptor Output = b6

Encryption/Decryption

SB Data Mask Input
SB Encryptor Output =
SB Decryptor Output

Encryption/Decryption

SB Data Mask Input = b6
SB Encryptor Output = 9b
SB Decryptor Output = b6

Encryption/Decryption (2

SB Data Mask Input = b6
SB Encryptor Output 00
SB Decryptor Output = 80

Encryption, 47 bits,Voice

SB Data Mask Input b6
SB Encryptor Output = 9e

(17 bits,

(16 bits,

Short Block Encryptor

(47 bits,Voice

2d a2 44 fe
£f8 41 7e 5d
2d a2 44 fe

2d a2 44 fe
a8 00 00 00
2d 00 00 00

bits, Voice

2d a2 44 fe
00 00 00 0O
00 00 00 0O

Common Cryptographic Algorithms Revision D.1

content, Reverse Channel)

9b
f2
S9a

Voice content,Reverse Channel

b6 2d a2 44 fe 9b
b7 ed 80 00 00 00
bée 2d 80 00 00 00

Voice content,Reverse Channel

9b
00
00

content, Reverse Channel

9b
00
00

content, Forward Channel

2d a2 44 fe
df 05 a8 43

9b
34

Encryption,47 bits,Message content,Forward Channel

SB Data Mask Input =
SB Encryptor Output

b6 2d a2 44 fe 9b
4f 89 £7 09 29 a8

Encryption, 47 bits,Message content,Forward Channel,different entropy

SB Data Mask Input
SB Encryptor Output

b6 2d a2 44 fe 9b
c8 fe da 7d 87 da

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).
172

o O b~ W

10
1"

12

13
14
15
16

17

18
19
20

21

22
23
24

25

26
27
28

29

30
31
32

33

34
35
36

Common Cryptographic Algorithms Revision D.1

Vector Set 6 - Enhanced Message Encryption

48 bits

Message input = b6 2d a2 44 fe 9b
Encryptor output = 87 ce 86 a0 f1 86
Decryptor output = b6 2d a2 44 fe 9b

256 Octets (2047 bits)

Last P/O Message inpu
Last P/O Encryptor outpu
Last P/O Decryptor outpu

44 bits

t
t
t

b6 2d a2 44 fe 9b 23 ab
2b 52 46 a6 da 82 f2 fO
b6 2d a2 44 fe 9b 23 aa

Message input = b6 2d a2 44 fe

Encryptor output

b4 5b 16 dl c2

Decryptor output = b6 2d a2 44 fe

48 bits, Forward Channel

be
28

Message input
Encryptor output

48 bits, DCCH -> DTC

Message input = b6
Encryptor output = 28

48 bits, different RAND

Message input = b6
Encryptor output = 3c

44 bits, different RAND

Message input = b6
Encryptor output = a7

9b
10
90

-> Reverse Channel

2d a2 44 fe

09

2d
a4

2d
cf

2d
03

48 bits, different Message

Message input = b6
Encryptor output = dc

2d
27

3e

az
ed

az
9e

az
f3

fe

44
ao

44
23

44
42

Type

az
53

44
82

49

fe
68

fe
a5b

fe

9b
06

9b
Oa

9b
Ve

9b

2b 10

fe
ds

9b
77

09/13/2000

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as

specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

173

© O N O O b~ W

10

1"
12
13
14
15
16
17

18

19
20
21
22
23
24
25

26

27
28
29
30
31

32

33

35

09/13/2000

Vector Set 7 - Enhanced Voice Privacy

48 Class 1A bits,

1A/Rem. bits input
5d bb 01

Encryptor output
d4 5c 30

Decryptor output
5d bb 00

81 Class 1A bits,

1A/Rem. bits input

64 dc 54 49 d2 5d bb

Encryptor output

39 16 a0 80 c7 b0 59

Decryptor output

64 dc 54 49 d2 5d bb

12 Class 1A bits,

1A/Rem. bits input
dc 54 49 d2 5d
Encryptor output
c3 f£9 d6 db e0
Decryptor output
dc 54 49 d2 40

b6 2d

bd 5e

b6 2d

b6 2d
01 64
5b 68
fb 5c
b6 2d
01 64

b6 2d

ed 20

b6 20

100 remaining bits

a2 44 fe 9o

36 a5 8c 07

a2 44 fe 9o

163 remaining bits

a2 44 fe 9o
dc 54 49 d2
57 98 42 83
6e 23 91 08
a2 44 fe 9o
dc 54 49 d2

147 remaining bits

Common Cryptographic Algorithms Revision D.1

/ 49 d2 5d bb 01
/ 87 58 05 c7 38

/ 49 d2 5d bb 01

23 ab b6 24 a2 /
5d bb 01
81 92 b2 1f 80 /
bc d2 a0
23 ab b6 24 80 /
5d bb 00

/ 49 d2 5d bb 01 64 dc 54 49

/ 5b 3c 7e 6a 21 18 f1 69 82

/ 49 d2 5d bb 01 64 dc 54 49

Reverse Channel, 48 Class 1A bits, 100

1A/Rem. bits input
5d bb 01

Encryptor output
a3 19 e0

remaining bits

bé 2d a2 44 fe 9b / 49 d2 5d bb 01

59 fe 84 59 ec 18 / e0 6d a0 79 0Oa

Vector Set 8 - Enhanced Data Mask Generation

Enhanced Data Mask Output

Output, with short mask =

45 b0 15 31 d6 e0

45 b0 15

64

37

64

49

es8

49

d2

87

d2

64

89

dc

of

dc

d2

52

d2

5d

£7

5d

dc

6a

54

68

54

5d

c6

5d

bb

ds

bb

54

05

49

e2

49

bb

fe6

bb

01

92

01

49

7d

d2

3f

d2

01

60

01

64

51

64

d2

2a

Information disclosed in this document is subject to the export jurisdiction of the US Department of Commerce as
specified in Export Administration Regulations (title 15 CFR parts 730 through 774 inclusive).

174

	Introduction
	Notations
	Definitions

	Procedures
	CAVE
	Authentication Key (A-Key) Procedures
	A-Key Checksum Calculation
	A-Key Verification

	SSD Generation and Update
	SSD Generation Procedure
	SSD Update Procedure

	Authentication Signature Calculation Procedure
	Secret Key and Secret Parameter Generation
	CMEA Encryption Key and VPM Generation Procedure
	CMEA key Generation
	Voice Privacy Mask Generation

	ECMEA Secrets Generation for Financial Messages Procedure
	Non-Financial Seed Key Generation Procedure
	ECMEA Secrets Generation for Non-Financial Messages Procedure

	Message Encryption/Decryption Procedures
	CMEA Encryption/Decryption Procedure
	ECMEA Encryption/Decryption Procedure

	Wireless Residential Extension Procedures
	WIKEY Generation
	WIKEY Update Procedure
	Wireline Interface Authentication Signature Calculation Procedure
	Wireless Residential Extension Authentication Signature Calculation Procedure

	Basic Wireless Data Encryption
	Data Encryption Key Generation Procedure
	L-Table Generation Procedure
	Data Encryption Mask Generation Procedure

	Enhanced Voice and Data Privacy
	SCEMA Key Generation Code
	DTC Key Generation
	DCCH Key Generation
	SCEMA Secret Generation

	SCEMA Header File
	SCEMA Encryption/Decryption Procedure (Level 1)
	Block and KSG Encryption Primitives (Level 2)
	SCEMA KSG
	Long Block Encryptor
	Short Block Encryptor

	Voice, Message, and Data Encryption Procedures (Level€3)
	Enhanced Voice Privacy
	Enhanced Message Encryption
	Enhanced Wireless Data Encryption

	Test Vectors
	CAVE Test Vectors
	Vector 1
	Vector 2
	Vector 3
	Test Program

	Wireless Residential Extension Test Vector
	Input data
	Test Program
	Test Program Output

	Basic Data Encryption Test Vector
	Input data
	Test Program
	Test Program Output

	Enhanced Voice and Data Privacy Test Vectors
	Input Data
	Test Program
	Main program file
	Vector set 3
	Vector set 4
	Vector set 5
	Vector set 6
	Vector set 7
	Vector set 8

	Test Program Input and Output

