
TR45.AHAG

Interface Specification

for

Common Cryptographic
Algorithms, Revision D.1

Publication Version

September 13, 2000

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

ii

NOTICE

TIA Engineering Standards and Publications are designed to serve the
public interest through eliminating misunderstandings between
manufacturers and purchasers, facilitating inter-changeability and
improvement of products, and assisting the purchaser in selecting and
obtaining with minimum delay the proper product for their particular
need. Existence of such Standards and Publications shall not in any
respect preclude any member or non-member of TIA from
manufacturing or selling products not conforming to such Standards
and Publications, nor shall the existence of such Standards and
Publications preclude their voluntary use by those other than TIA
members, whether the standard is to be used either domestically or
internationally.

Standards and Publications are adopted by TIA without regard to
whether or not their adoption may involve patents or articles, materials,
or processes. By such action, TIA does not assume any liability to any
patent owner, nor does it assume any obligation whatever to parties
adopting the Recommended Standard or Publication.

Standards and Publications are adopted by EIA/TIA without regard to
whether or not their adoption may involve patents or articles, materials,
or processes. By such action, EIA/TIA does not assume any liability to
any patent owner, nor does it assume any obligation whatever to parties
adopting the Recommended Standard or Publication.

TIA TR45 Ad Hoc Authentication Group Documents

TIA TR45 Ad Hoc Authentication Group Documents contain
information deemed to be of technical value to the industry, and are
published at the request of the TR45 Ad Hoc Authentication Group
without necessarily following the rigorous public review and resolution
of comments which is a procedural part of the development of a TIA
Standard.

Contact

TELECOMMUNICATIONS INDUSTRY ASSOCIATION
Engineering Department
2500 Wilson Boulevard, Suite 300
Arlington, Virginia 22201
Copyright 2000
TELECOMMUNICATIONS INDUSTRY ASSOCIATION
All rights reserved
Printed in the United States

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

iii

Document History

Revision Date Remarks

0 02-05-93 Frozen for PN-3118 Ballot

0.1 04-21-93 Adopted by TR45 AHAG

1.00 10-20-94 Draft including data encryption and A-key checksum calculation

A 12-14-94 Major revision, incorporating ORYX data encryption algorithms and
ANSI C algorithm descriptions

B 08-06-96 Added wireless residential extension authentication

B.1 04-15-97 Version for PN-3795 ballot.

C 10-27-98 Add ECMEA and related key management procedures

D 03-14-00 Add SCEMA and related procedures

D.1 09-13-00 Corrections to SCEMA key scheduling

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

iv

Table of Contents

1. Introduction ... 1

1.1. Definitions ... 2

2. Procedures ... 4

2.1. Authentication Key (A-Key) Procedures ... 4
2.1.1. A-Key Checksum Calculation.. 4
2.1.2. A-Key Verification .. 5

2.2. SSD Generation and Update .. 6
2.2.1. SSD Generation Procedure .. 6
2.2.2. SSD Update Procedure .. 7

2.3. Authentication Signature Calculation Procedure ... 8

2.4. Secret Key and Secret Parameter Generation... 9
2.4.1. CMEA Encryption Key and VPM Generation Procedure 10
2.4.2. ECMEA Secrets Generation for Financial Messages Procedure 11
2.4.3. Non-Financial Seed Key Generation Procedure .. 11
2.4.4. ECMEA Secrets Generation for Non-Financial Messages Procedure 12

2.5. Message Encryption/Decryption Procedures ... 13
2.5.1. CMEA Encryption/Decryption Procedure ... 13
2.5.2. ECMEA Encryption/Decryption Procedure... 14

2.6. Wireless Residential Extension Procedures ... 15
2.6.1. WIKEY Generation ... 15
2.6.2. WIKEY Update Procedure .. 16
2.6.3. Wireline Interface Authentication Signature Calculation Procedure 17
2.6.4. Wireless Residential Extension Authentication Signature Calculation Procedure. 18

2.7. Basic Wireless Data Encryption... 19
2.7.1. Data Encryption Key Generation Procedure.. 20
2.7.2. L Table Generation Procedure... 21
2.7.3. Data Encryption Mask Generation Procedure ... 22

2.8. Enhanced Voice and Data Privacy... 23
2.8.1. SCEMA Key Generation ... 23

2.8.1.1. DTC Key Generation ... 24
2.8.1.2. DCCH Key Generation .. 25
2.8.1.3. SCEMA Secret Generation .. 26

2.8.2. SCEMA Encryption/Decryption Procedure (Level 1) ... 27
2.8.3. Block and KSG Encryption Primitives (Level 2) .. 29

2.8.3.1. SCEMA KSG... 29
2.8.3.2. Long Block Encryptor ... 30
2.8.3.3. Short Block Encryptor ... 31

2.8.4. Voice, Message, and Data Encryption Procedures (Level 3)................................. 32
2.8.4.1. Enhanced Voice Privacy.. 32

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

v

2.8.4.2. Enhanced Message Encryption .. 34
2.8.4.3. Enhanced Wireless Data Encryption.. 36

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

vi

No text

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

1

1. Introduction1

This document describes the interfaces to cryptographic procedures for2

wireless system applications. These procedures are used to perform the3

security services of mobile station authentication, subscriber message4

encryption, and encryption key and subscriber voice privacy key5

generation within wireless equipment. The procedures are described in6

detail in “Common Cryptographic Algorithms.”7

The purpose of this specification is to describe the cryptographic8

functions without revealing the technical details that are subject to the9

export jurisdiction of the US Department of Commerce as specified in10

Export Administration Regulations (EAR), Title 15 CFR parts 73011

through 774 inclusive. It is intended that developers of EIA/TIA12

standards for systems using these cryptographic functions use the13

information in this document in standards that are not subject to EAR14

restrictions.15

The procedures are described in the document as follows:16

§2.1 describes the procedure to verify the manual entry of the17

subscriber authentication key (A-key).18

§2.2 describes the generation of intermediate subscriber19

cryptovariables, Shared Secret Data (SSD), from the unique and private20

subscriber A-key.21

§2.3 describes the procedure to calculate an authentication signature22

used by wireless base station equipment for verifying the authenticity of23

a mobile station.24

§2.4 describes the procedure used for generating cryptographic keys.25

§2.5 describes the procedure used for enciphering and deciphering26

subscriber data exchanged between the mobile station and the base27

station.28

§2.6 describes the procedures for wireless residential extension29

authentication.30

§2.7 describes the procedures for key and mask generation for31

encryption and decryption in wireless data services.32

§2.8 describes key generation and encryption procedures for the33

following TDMA content: voice, DTC and DCCH messages, and RLP34

data.35

Manufacturers are cautioned that no mechanisms should be provided36

for the display at the ACRE, PB or mobile station (or any other37

equipment that may be interfaced with it) of valid A-key, SSD_A,38

SSD_B, MANUFACT_KEY, WIKEY, WRE_KEY or other39

cryptovariables associated with the cryptographic functions described in40

this document. The invocation of test mode in the ACRE, PB or mobile41

station must not alter the operational values of A-key, SSD_A, SSD_B42

MANUFACT_KEY, WIKEY, WRE_KEY or other cryptovariables.43

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

2

1.1. Definitions1

ACRE Authorization and Call Routing Equipment. A network device which2

authorizes the Personal Base and provides automatic call routing.3

ACRE_PHONE_NUMBER A 24-bit pattern comprised of the last 6 digits of the ACRE's directory4

number.5

A-key A 64-bit cryptographic key variable stored in the semi-permanent6

memory of the mobile station and also known to the Authentication7

Center (AC or HLR/AC) of the wireless system. It is entered when the8

mobile station is first put into service with a particular subscriber, and9

usually will remain unchanged unless the operator determines that its10

value has been compromised. The A-key is used in the SSD generation11

procedure.12

Boolean Describes a quantity whose value is either TRUE or FALSE.13

CMEA Cellular Message Encryption Algorithm.14

CMEAKEY A 64-bit cryptographic key used to encrypt certain messages.15

DataKey A 32-bit cryptographic key used for generation of masks for encryption16

and decryption in wireless data services.17

Data_type A one-bit value indicating whether the financial or non-financial data18

encryption parameters are used.19

Directory Number The telephone network address.20

ECMEA Enhanced Cellular Message Encryption Algorithm.21

ECMEA_KEY A 64-bit cryptographic key used to encrypt financial messages.22

ECMEA_NF_KEY A 64-bit cryptographic key used to encrypt non-financial messages.23

ESN The 32-bit electronic serial number of the mobile station.24

Internal Stored Data Stored data that is defined locally within the cryptographic procedures25

and is not accessible for examination or use outside those procedures.26

LSB Least Significant Bit.27

MSB Most Significant Bit.28

offset_key A 32-bit cryptographic key used to create offsets that are passed to29

ECMEA.30

offset_nf_key A 32-bit cryptographic key used to create offsets that are passed to31

ECMEA for use in encryption of non-financial data.32

PB Personal Base. A fixed device which provides cordless telephone like33

service to a mobile station.34

PBID Personal Base Identification Code.35

RAND_ACRE A 32-bit random number which is generated by the PB.36

RAND_PB A 32-bit random number which is generated by the ACRE.37

RAND_WIKEY A 56-bit random number which is generated by the ACRE.38

RAND_WRE A 19-bit random number which is generated by the PB.39

SEED_NF_KEY Five 8-bit registers whose content constitutes the 40-bit binary quantity40

generated after the CMEA key and used to initialize the CAVE41

algorithm for generation of the ECMEA_NF key and offset_nf keys.42

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

3

SSD SSD is an abbreviation for Shared Secret Data. It consists of two1

quantities, SSD_A and SSD_B.2

SSD_A A 64-bit binary quantity in the semi-permanent memory of the mobile3

station and also known to Authentication Center. It may be shared with4

the serving MSC. It is used in the computation of the authentication5

response.6

SSD_A_NEW The revised 64-bit quantity held separately from SSD_A, generated as a7

result of the SSD generation process.8

SSD_B A 64-bit binary quantity in the semi-permanent memory of the mobile9

station and also known to the Authentication Center. It may be shared10

with the serving MSC. It is used in the computation of the CMEA and11

VPM.12

SSD_B_NEW The revised 64-bit quantity held separately from SSD_B, generated as a13

result of the SSD generation process.14

Sync A 16-bit value provided by the air interface used to generate offsets for15

ECMEA.16

VPM Voice Privacy Mask. This name describes a 520-bit entity that may be17

used for voice privacy functions as specified in wireless system18

standards.19

WIKEY Wireline Interface key. A 64-bit pattern stored in the PB and the ACRE20

(in semi-permanent memory).21

WIKEY_NEW A 64-bit pattern stored in the PB and the ACRE. It contains the value22

of an updated WIKEY.23

WRE_KEY Wireless Residential Extension key. A 64-bit pattern stored in the PB24

and the mobile station in semi-permanent memory.25

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

4

2. Procedures1

2

2.1. Authentication Key (A-Key) Procedures3

2.1.1. A-Key Checksum Calculation4

Procedure name:5

A_Key_Checksum6

Inputs from calling process:7

A_KEY_DIGITS 20 decimal digits8

ESN 32 bits9

Inputs from internal stored data:10

(internal definition only)11

Outputs to calling process:12

A_KEY_CHECKSUM 6 decimal digits13

Outputs to internal stored data:14

None.15

This procedure computes the checksum for an A-key to be entered into16

a mobile station. In a case where the number of digits to be entered is17

less than 20, the leading most significant digits will be set equal to zero.18

The generation of the A-key is the responsibility of the service19

provider. A-keys should be chosen and managed using procedures that20

minimize the likelihood of compromise.21

The checksum provides a check for the accuracy of the A-Key when22

entered into a mobile station. The checksum is calculated for the 2023

A-Key digits input to the algorithm. The checksum is returned as 624

decimal digits for entry into the mobile station.25

The first decimal digit of the A-Key to be entered is considered to be26

the most significant of the 20 decimal digits, followed in succession by27

the other nineteen. A decimal to binary conversion process converts the28

digit sequence into its equivalent mod-2 representation. For example,29

the 20 digits30

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 031

have a hexadecimal equivalent of32

A B 5 4 A 9 8 C E B 1 F 0 A D 2.33

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

5

2.1.2. A-Key Verification1

Procedure name:2

A_Key_Verify3

Inputs from calling process:4

A_KEY_DIGITS from 6 to 26 decimal digits5

ESN 32 bits6

Inputs from internal stored data:7

(internal definition only)8

Outputs to calling process:9

A_KEY_VERIFIED Boolean10

Outputs to internal stored data:11

A-key 64 bits12

SSD_A 64 bits (set to zero)13

SSD_B 64 bits (set to zero)14

The A-key may be entered into the mobile station by any of several15

methods. These include direct electronic entry, over-the-air procedures,16

and manual entry via the mobile station’s keypad. This procedure17

verifies the A-key entered into a mobile station via the keypad.18

The default value of the A-key when the mobile station is shipped from19

the factory will be all binary zeros. The value of the A-key is specified20

by the operator and is to be communicated to the subscriber according21

to the methods specified by each operator. A multiple NAM mobile22

station will require multiple A-keys, as well as multiple sets of the23

corresponding cryptovariables per A-key.24

While A-key digits are being entered from a keypad, the mobile station25

transmitter shall be disabled.26

When the A-key digits are entered from a keypad, the number of digits27

entered is to be at least 6, and may be any number of digits up to and28

including 26 digits. In a case where the number of digits entered is less29

than 26, the leading most significant digits will be set equal to zero, in30

order to produce a 26-digit quantity called the “entry value”.31

The verification procedure checks the accuracy of the 26 decimal digit32

entry value. If the verification is successful, the 64-bit pattern33

determined by the first 20 digits of the entry value will be written to the34

subscriber's semi-permanent memory as the A-key. Furthermore, the35

SSD_A and the SSD_B will be set to zero. The return value36

A_KEY_VERIFIED is set to TRUE. In the case of a mismatch,37

A_KEY_VERIFIED is set to FALSE, and no internal data is updated.38

The first decimal digit of the “entry value” is considered to be the most39

significant of the 20 decimal digits, followed in succession by the other40

nineteen. The twenty-first digit is the most significant of the check41

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

6

digits, followed in succession by the remaining five. For example, the1

26 digits2

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0, 1 3 1 1 3 63

has a hexadecimal equivalent of4

A B 5 4 A 9 8 C E B 1 F 0 A D 2, 2 0 0 4 0.5

2.2. SSD Generation and Update6

2.2.1. SSD Generation Procedure7

Procedure name:8

SSD_Generation9

Inputs from calling process:10

RANDSSD 56 bits11

ESN 32 bits12

Inputs from internal stored data:13

A-key 64 bits14

Outputs to calling process:15

None.16

Outputs to internal stored data:17

SSD_A_NEW 64 bits18

SSD_B_NEW 64 bits19

This procedure performs the calculation of Shared Secret Data. The20

result is held in memory as SSD_A_NEW and SSD_B_NEW until the21

SSD_Update procedure (§2.2.2) is invoked.22

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

7

2.2.2. SSD Update Procedure1

Procedure name:2

SSD_Update3

Inputs from calling process:4

None.5

Inputs from internal stored data:6

SSD_A_NEW 64 bits7

SSD_B_NEW 64 bits8

Outputs to calling process:9

None.10

Outputs to internal stored data:11

SSD_A 64 bits12

SSD_B 64 bits13

This procedure copies the values SSD_A_NEW and SSD_B_NEW into14

the stored SSD_A and SSD_B.15

The values SSD_A_NEW and SSD_B_NEW calculated by the16

SSD_Generation procedure (§2.2.1) should be validated prior to storing17

them permanently as SSD_A and SSD_B. The base station and the18

mobile station should exchange validation data sufficient to determine19

that the values of the Shared Secret Data are the same in both locations.20

When validation is completed successfully, the SSD_Update procedure21

is invoked, setting SSD_A to SSD_A_NEW and setting SSD_B to22

SSD_B_NEW.23

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

8

2.3. Authentication Signature Calculation Procedure1

Procedure name:2

Auth_Signature3

Inputs from calling process:4

RAND_CHALLENGE 32 bits5

ESN 32 bits6

AUTH_DATA 24 bits7

SSD_AUTH 64 bits8

SAVE_REGISTERS Boolean9

Inputs from internal stored data:10

(internal definition only)11

Outputs to calling process:12

AUTH_SIGNATURE 18 bits13

Outputs to internal stored data:14

Saved register data (internal definition only)15

This procedure is used to calculate 18-bit signatures used for verifying16

the authenticity of messages used to request wireless system services,17

and for verifying Shared Secret Data.18

For authentication of mobile station messages and for base station19

challenges of a mobile station, RAND_CHALLENGE should be20

selected by the authenticating entity (normally the HLR or VLR).21

RAND_CHALLENGE must be received by the mobile station22

executing this procedure. Results returned by the mobile station should23

include check data that can be used to verify that the24

RAND_CHALLENGE value used by the mobile station matches that25

used by the authenticating entity.26

For mobile station challenges of a base station, as performed during the27

verification of Shared Secret Data, the mobile station should select28

RAND_CHALLENGE. The selected value of RAND_CHALLENGE29

must be received by the base station executing this procedure.30

When this procedure is used to generate an authentication signature for31

a message, AUTH_DATA should include a part of the message to be32

authenticated. The contents should be chosen to minimize the33

possibility that other messages would produce the same authentication34

signature.35

SSD_AUTH should be either SSD_A or SSD_A_NEW computed by36

the SSD_Generation procedure, or SSD_A as obtained from the37

HLR/AC.38

If the calling process sets SAVE_REGISTERS to TRUE, the internal39

register data used in the authentication signature calculation are stored40

for use in computing the encryption key and voice privacy mask (see41

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

9

2.4). If the calling process sets SAVE_REGISTERS to FALSE, the1

contents of internal storage are not changed. . A means should be2

provided to indicate whether the internal storage contents are valid3

2.4. Secret Key and Secret Parameter Generation4

This section describes four procedures used for generating secret keys5

and other secret parameters for use in CMEA, Enhanced CMEA6

(ECMEA) and the voice privacy mask. The generation of distinct7

secrets for ECMEA encryption of financial and non-financial messages8

(e.g. user data) is addressed.9

The first procedure uses SSD_B and other parameters to generate10

• the secret CMEA key for message encryption, and11

• the voice privacy mask.12

The second procedure uses the secret CMEA key produced in the first13

procedure to generate the secrets used by ECMEA to encrypt financial14

messages.15

The third procedure uses the secret CMEA key produced in the first16

procedure to generate the secret non-financial seed key needed to start17

the fourth procedure.18

The fourth procedure uses the secret non-financial seed key produced in19

the third procedure to generate the secrets used by ECMEA to encrypt20

non-financial messages.21

For backward compatibility with CMEA, the first procedure will always22

be executed. The secret CMEA key will exist in both the infrastructure23

and the mobile station.24

When ECMEA is implemented, the second, third, and fourth25

procedures will be executed to produce the secret keys and parameters26

needed to encrypt both financial and non-financial messages.27

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

10

2.4.1. CMEA Encryption Key and VPM Generation Procedure1

Procedure name:2

Key_VPM_Generation3

Inputs from calling process:4

None.5

Inputs from internal stored data:6

SSD_B 64 bits7

saved register data (internal definition only)8

(see §2.3)9

Outputs to calling process:10

None.11

Outputs to internal stored data:12

CMEAKEY 64 bits13

VPM 520 bits14

This procedure computes the CMEA key for message encryption and15

the voice privacy mask. Prior to invoking this procedure, the16

authentication signature calculation procedure (§2.3) must have been17

invoked with SAVE_REGISTERS set to TRUE. This procedure must18

be invoked prior to execution of the encryption procedure (§2.5).19

For this procedure, the saved internal variables to be used are those20

from the last authentication signature calculation for which the calling21

process set SAVE_REGISTERS to true. This should generally be the22

authentication calculation for the message that establishes the call for23

which encryption and/or voice privacy is to be invoked.24

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

11

2.4.2. ECMEA Secrets Generation for Financial Messages1

Procedure2

Procedure name:3

ECMEA_Secret_Generation4

Inputs from calling process:5

None.6

Inputs from internal stored data:7

CMEAKEY 64 bits8

Outputs to calling process:9

None.10

Outputs to internal stored data:11

ECMEA_KEY 64 bits12

OFFSET_KEY 32 bits13

The CMEA Encryption Key and VPM Generation Procedure defined in14

§2.4.1 is used to generate a CMEA key on a per-call basis. ECMEA for15

financial messages requires additional secret values to be generated on16

a per-call basis. This procedure accomplishes this by running the CAVE17

algorithm initialized by the original CMEA key (64 bits).18

2.4.3. Non-Financial Seed Key Generation Procedure19

Procedure name:20

Non-Financial_Seed_Key_Generation21

Inputs from calling process:22

None.23

Inputs from internal stored data:24

CMEAKEY 64 bits25

Outputs to calling process:26

None.27

Outputs to internal stored data:28

SEED_NF_KEY 40 bits29

The CMEA Encryption Key and VPM Generation Procedure defined in30

§2.4.1 is used to generate a CMEA key on a per-call basis. A non-31

financial seed key is required before generating the ECMEA secrets for32

non-financial messages. This procedure accomplishes this by running33

the CAVE algorithm initialized by the original CMEA key (64 bits).34

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

12

2.4.4. ECMEA Secrets Generation for Non-Financial Messages1

Procedure2

Procedure name:3

Non-Financial_Secret_Generation4

Inputs from calling process:5

None.6

Inputs from internal stored data:7

SEED_NF_KEY 40 bits8

Outputs to calling process:9

None.10

Outputs to internal stored data:11

ECMEA_NF_KEY 64 bits12

OFFSET_NF_KEY 32 bits13

The Non-Financial Seed Key Generation Procedure defined in §2.4.3 is14

used to generate a seed key on a per-call basis. ECMEA for non-15

financial messages requires additional secret values to be generated on16

a per-call basis. This procedure accomplishes this by running the CAVE17

algorithm initialized by the original seed key (40 bits).18

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

13

2.5. Message Encryption/Decryption Procedures1

2.5.1. CMEA Encryption/Decryption Procedure2

Procedure name:3

Encrypt4

Inputs from calling process:5

msg_buf[n] n*8 bits, n > 16

Inputs from internal stored data:7

CMEAKEY[0-7] 64 bits8

Outputs to calling process:9

msg_buf[n] n*8 bits10

Outputs to internal stored data:11

None.12

This algorithm encrypts and decrypts messages that are of length n*813

bits, where n > 1. Decryption is performed in the same manner as14

encryption.15

The message is first stored in an n-octet buffer called msg_buf[],16

such that each octet is assigned to one “msg_buf[]” value.17

msg_buf[] will be encrypted and the encrypted values returned in the18

same storage buffer.19

This process uses the CMEA key to produce enciphered messages via a20

unique CMEA algorithm. The CMEA key generation procedure is21

described in §2.4.22

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

14

2.5.2. ECMEA Encryption/Decryption Procedure1

Procedure name:2

ECMEA3

Inputs from calling process:4

msg_buf[n] n*8 bits, n > 15

Sync 16 bits6

Decrypt 1 bit7

Data_type 1 bit8

Inputs from internal stored data:9

ECMEA_KEY[0-7] 64 bits10

offset_key[0-3] 32 bits11

Outputs to calling process:12

msg_buf[n] n*8 bits13

Outputs to internal stored data:14

None.15

This algorithm encrypts and decrypts messages that are of length n*816

bits, where n > 1.17

The message is first stored in an n-octet buffer called msg_buf[],18

such that each octet is assigned to one “msg_buf[]” value. The input19

variable sync should have a unique value for each message that is20

encrypted. The same value of sync is used again for decryption.21

This process uses the ECMEA eight-octet session key to produce22

enciphered messages via an enhanced CMEA algorithm. The process23

of ECMEA key generation is described in §2.4.2.24

The decrypt variable shall be set to 0 for encryption, and to 1 for25

decryption.26

The data_type variable shall be set to 0 for financial messages, and27

to 1 for non-financial messages.28

ECMEA encryption of financial messages uses ECMEA key and29

offset_key.30

ECMEA encryption of non-financial messages uses ECMEA_NF key31

and offset_nf_key32

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

15

2.6. Wireless Residential Extension Procedures1

This section describes detailed cryptographic procedures for wireless2

mobile telecommunications systems offering auxiliary services. These3

procedures are used to perform the security services of Authorization4

and Call Routing Equipment (ACRE), Personal Base (PB) and Mobile5

Station (MS) authentication.6

2.6.1. WIKEY Generation7

Procedure name:8

WIKEY_Generation9

Inputs from calling process:10

MANUFACT_KEY 122 bits11

PBID 30 bits12

Inputs from internal stored data:13

AAV 8 bits14

Outputs to calling process:15

None.16

Outputs to internal stored data:17

WIKEY 64 bits18

This procedure is used to calculate the WIKEY value generated during19

the manufacturing process. This WIKEY value is stored in semi-20

permanent memory of the PB.21

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

16

2.6.2. WIKEY Update Procedure1

Procedure name:2

WIKEY_Update3

Inputs from calling process:4

RAND_WIKEY 56 bits5

PBID 30 bits6

Inputs from internal stored data:7

WIKEY 64 bits8

AAV 8 bits9

Outputs to calling process:10

None.11

Outputs to internal stored data:12

WIKEY_NEW 64 bits13

This procedure is used to calculate a new WIKEY value.14

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

17

2.6.3. Wireline Interface Authentication Signature Calculation1

Procedure2

Procedure name:3

WI_Auth_Signature4

Inputs from calling process:5

RAND_CHALLENGE 32 bits6

PBID 30 bits7

ACRE_PHONE_NUMBER 24 bits8

Inputs from internal stored data:9

WIKEY 64 bits10

AAV 8 bits11

Outputs to calling process:12

AUTH_SIGNATURE 18 bits13

Outputs to internal stored data:14

None.15

This procedure is used to calculate 18-bit signatures used for verifying16

WIKEY values.17

For authentication of an ACRE, RAND_CHALLENGE is received18

from the PB as RAND_ACRE.19

For authentication of a PB, RAND_CHALLENGE is received from the20

ACRE as RAND_PB.21

The ACRE_PHONE_NUMBER is 24 bits comprised of the least22

significant 24 bits of the ACRE's directory number (4 bits per digit).23

The digits 1 through 9 are represented by their 4-bit binary values24

(0001 - 1001). The digit 0 is represented by the binary value 1010. In25

a case where the number of ACRE directory number digits is less than26

six, the leading most significant bits of the ACRE_PHONE_NUMBER27

will be set equal to binary zero. For example, the ACRE directory28

number29

(987) 654-321030

has a binary ACRE_PHONE_NUMBER31

0101 0100 0011 0010 0001 1010.32

The ACRE directory number33

869534

has a binary ACRE_PHONE_NUMBER of35

0000 0000 1000 0110 1001 0101.36

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

18

2.6.4. Wireless Residential Extension Authentication Signature1

Calculation Procedure2

Procedure name:3

WRE_Auth_Signature4

Inputs from calling process:5

RAND_WRE 19 bits6

ESN 32 bits7

PBID 30 bits8

Inputs from internal stored data:9

WRE_KEY 64 bits10

AAV 8 bits11

Outputs to calling process:12

AUTH_SIGNATURE 18 bits13

Outputs to internal stored data:14

None.15

This procedure is used to calculate 18-bit signatures used for verifying16

a mobile station.17

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

19

2.7. Basic Wireless Data Encryption1

Data encryption for wireless data services is provided by the ORYX2

algorithm (as named by its developers) which is described in the3

following.4

ORYX comprises three procedures, of which the first two provide input5

to the third:6

• The DataKey Generation Procedure generates a DataKey. SSD_B7

provides the sole input to this procedure. If the data encryptor has8

access to SSD_B, DataKey may be generated locally. If not,9

DataKey is calculated elsewhere, then sent to the encryptor.10

 In the network, this procedure executes at the initial serving system11

if SSD_B is shared or at the authentication center if SSD_B is not12

shared. DataKey may be precomputed when the mobile station13

registers.14

• The LTable Generation Procedure generates a lookup table. RAND15

provides the sole input to this procedure. L is generated locally. In16

the network, this procedure executes at the initial serving system,17

and after intersystem handoff, it may execute at subsequent serving18

systems.19

• The Data_Mask Procedure provides an encryption mask of the20

length requested by the calling process. It uses four inputs:21

1. DataKey from the DataKey Generation Procedure via the call-22

ing process;23

2. HOOK directly from the calling process;24

3. len directly from the calling process; and25

4. L as stored from the LTable Generation Procedure.26

 The encryption mask is generated locally.27

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

20

2.7.1. Data Encryption Key Generation Procedure1

Procedure name:2

DataKey_Generation3

Inputs from calling process:4

None.5

Inputs from internal stored data:6

SSD_B 64 bits7

Outputs to calling process:8

DataKey 32 bits9

Outputs to internal stored data:10

None.11

This procedure generates DataKey, a key used by the Data_Mask12

procedure (see 2.7.1.3).13

The calculation of DataKey depends only on SSD_B, therefore14

DataKey may be computed at the beginning of each call using the15

current value of SSD_B, or it may be computed and saved when SSD is16

updated. The value of DataKey shall not change during a call.17

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

21

2.7.2. L Table Generation Procedure1

Procedure name:2

LTable_Generation3

Inputs from calling process:4

RAND 32 bits5

Inputs from internal stored data:6

None.7

Outputs to calling process:8

None.9

Outputs to internal stored data:10

L 256*8 bits11

This procedure generates L, a table used in the Data_Mask procedure12

(see 2.7.1.3).13

The LTable_Generation procedure shall be executed at the beginning of14

each call, and may be executed after intersystem handoff, using the15

value of RAND in effect at the start of the call. The value of L shall not16

change during a call.17

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

22

2.7.3. Data Encryption Mask Generation Procedure1

Procedure name:2

Data_Mask3

Inputs from calling process:4

DataKey 32 bits5

HOOK 32 bits6

len integer7

Inputs from internal stored data:8

L 256*8 bits9

Outputs to calling process:10

mask len*8 bits11

Outputs to internal stored data:12

None.13

This procedure generates an encryption mask of length len*8 bits.14

Implementations using data encryption shall comply with the following15

requirements. These requirements apply to all data encrypted during a16

call.17

• The least-significant bits of HOOK shall change most frequently.18

• A mask produced using a value of HOOK should be used to19

encrypt only one set of data.20

• A mask produced using a value of HOOK shall not be used to21

encrypt data in more than one direction of transmission, nor shall it22

be used to encrypt data on more than one logical channel.23

The DataKey and the look up table L must be computed prior to24

executing Data_Mask.25

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

23

2.8. Enhanced Voice and Data Privacy1

This section defines key generation and encryption procedures for the2

following TDMA content: voice, DTC and DCCH messages, and RLP3

data.4

There are three key generation procedures: DTC key schedule5

generation, DCCH key schedule generation, and a procedure that each6

of these call termed the SCEMA Secrets Generation. The DCCH key7

schedule is based on a CMEA Key instance which is generated at8

Registration and remains for the life of the Registration. The DTC key9

is generated from the CMEA Key on a per call basis.10

The encryption procedures contained herein are grouped into three11

levels, where the higher level procedures typically call procedures from12

a lower level. Level 1 has one member: the SCEMA encryption13

algorithm. Level 2 contains three procedures: a Long Block Encryptor14

for blocks of 48 bits, a Short Block Encryptor for blocks less than15

48 bits, and a KSG used in voice and message encryption. Level 316

contains voice, message, and RLP data encryption procedures which17

interface directly to TIA/EIA-136-510.18

2.8.1. SCEMA Key Generation19

20

This section describes the procedures used for generating secret key21

schedules for use in Enhanced Privacy and Encryption (EPE). Separate22

schedules are generated for the TDMA DTC (Digital Traffic Channel)23

and the DCCH (Digital Control Channel).24

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

24

2.8.1.1. DTC Key Generation1

2

Procedure name:3

DTC_Key_Generation4

Inputs from calling process:5

None.6

Inputs from internal stored data:7

CMEA Key (implicitly)8

Outputs to calling process:9

None.10

Outputs to internal stored data:11

dtcScheds[] DTC key schedule structure12

13

14

This procedure creates an array of DTC key schedule structures.15

Currently, the array contains a single element but allows the option to16

be extended in the future to accommodate multiple key schedules of17

different strengths.18

dtcScheds[0] is generated from the CMEA Key. In TIA/EIA-136-510,19

this 45-octet schedule is termed DTCKey.20

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

25

2.8.1.2. DCCH Key Generation1

2

Procedure name:3

DCCH_Key_Generation4

Inputs from calling process:5

None.6

Inputs from internal stored data:7

CMEA Key (implicitly)8

Outputs to calling process:9

None.10

Outputs to internal stored data:11

dcchScheds[] DCCH key schedule structure12

13

14

This procedure creates an array of DCCH key schedule structures.15

Currently, the array contains a single element but allows the option to16

be extended in the future to accommodate multiple key schedules of17

different strengths.18

dcchScheds[0] is generated from the CMEA Key. In TIA/EIA-136-510,19

this 45-octet schedule is termed DCCHKey.20

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

26

2.8.1.3. SCEMA Secret Generation1

2

Procedure name:3

SCEMA_Secret_Generation4

Inputs from calling process:5

None.6

Inputs from internal stored data:7

CMEAKEY[0-7] 64 bits8

Outputs to calling process:9

None.10

Outputs to internal stored data:11

SCEMA_KEY [0-7] 64 bits12

oboxSchedFin[0-15] 16 words (256 bits)13

offKeyAuxFin[0-1] 2 words (32 bits)14

15

The CMEA Encryption Key and VPM Generation Procedure, defined16

in section 2.5.1, is used to generate a CMEA key on a per-call basis.17

SCEMA requires additional secret values to be generated on a per-call18

or per-registration basis. This procedure accomplishes this by running19

the CAVE algorithm initialized by the original CMEA key (64 bits).20

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

27

2.8.2. SCEMA Encryption/Decryption Procedure (Level 1)1

Procedure name:2

SCEMA3

Inputs from calling process:4

msg_buf[n] n*8 bits, n > 25

csync[0-1] 326

id 1 octet7

idMask 1 octet8

decrypt 1 bit9

schedPtr pointer to key schedule10

containing scemaKey, obox,11

offKey, and neededLength12

Inputs from internal stored data:13

None.14

Outputs to calling process:15

msg_buf[n] n*8 bits16

Outputs to internal stored data:17

None.18

This algorithm encrypts and decrypts messages that are of length n19

octets, where n > 2.20

The message is first stored in an n-octet buffer called msg_buf[],21

such that each octet is assigned to one “msg_buf[]” value. The input22

variable csync should have a unique value for each message that is23

encrypted, with the portion that varies quickly in its lower 16 bits. The24

same value of csync is used again for decryption.25

The parameters id and idMask allow the internal copy of the top octet26

of cryptosync to be forced to a given value. idMask defines which bits27

are forced, and id defines the values of those bits. These inputs allow28

differentiation of scema instances. In particular, the following are29

differentiated: instances within a single procedure, and those with30

different content, direction or architecture. By doing this, a class of31

attacks is prevented that use recurring encryptor/decryptor outputs. One32

well-known member of this class are replay attacks.33

This SCEMA procedure uses the SCEMA variable-length session key34

to produce enciphered messages via an enhanced CMEA algorithm.35

The process of SCMEA key generation is described in §2.8.1.36

The decrypt variable shall be set to 0 for encryption, and to 1 for37

decryption.38

SCEMA is given a pointer, schedPtr, to the desired key schedule39

structure. The structure contains the following elements: *scemaKey,40

*obox, *offKey, and neededLength The first three are pointers to keys41

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

28

(cryptovariables). The fourth, neededLength, generally corresponds to1

the true entropy of the key. A key generation mechanism may be2

implemented such that it outputs the scemaKey into a constant buffer3

size, independent of the true strength of the key. This parameter allows4

SCEMA to track the true strength of the key, which in turn allows for5

faster operation with lower strength keys.6

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

29

2.8.3. Block and KSG Encryption Primitives (Level 2)1

These Level 2 primitives call SCEMA at Level 1 and are called by the2

voice privacy and message encryption procedures at Level 3.3

2.8.3.1. SCEMA KSG4

Procedure name:5

SCEMA_KSG6

Inputs from calling process:7

keystreamBuf[n] n octets, 1 <= n <= 2568

requestedStreamLen 1 - 2569

inputBuf[n] 1 - 6 octets10

inputLen 1 octet11

contentType 1 octet defining voice or message12

schedPtr pointer to SCEMA key schedule13

direction 1 bit14

Inputs from internal stored data:15

None.16

Outputs to calling process:17

keystreamBuf [n] n octets, 1 <= n <= 25618

Outputs to internal stored data:19

None.20

This encryption primitive generates a buffer of keystream of length21

requestedStreamLen based on the value of input buffer inputBuf[n] of22

length inputLen. It runs SCEMA in a KSG mode where the input is fed23

to both SCEMA's PT (plaintext) input and its CS (cryptosync) input.24

The content type variable allows it to generate unique keystream25

depending upon whether it is used in voice privacy or message26

encryption. (This primitive is not called in RLP encryption (Enhanced27

Data Encryption).)28

The pointer schedPtr is the SCEMA key schedule pointer described29

earlier in Section 2.8.2.30

Direction indicates either the forward channel by 1, or the reverse31

channel by 0.32

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

30

2.8.3.2. Long Block Encryptor1

Procedure name:2

Long_Block_Encryptor3

Inputs from calling process:4

contentBuf[n] 6 octets5

contentType 1 octet defining voice or message6

decrypt 1 bit7

schedPtr pointer to SCEMA key schedule8

direction 1 bit9

Inputs from internal stored data:10

None.11

Outputs to calling process:12

contentBuf [n] 6 octets13

Outputs to internal stored data:14

None.15

This encryption primitive block encrypts or decrypts a 6-octet buffer by16

running three instances of SCEMA. The content type variable allows it17

to generate unique keystream depending upon whether it is used in18

voice privacy or message encryption. (This primitive is not called in19

RLP encryption (Enhanced Data Encryption).)20

The parameter decrypt is set to 0 for encryption and 1 for decryption. It21

is needed here to determine the instance id number. This number22

uniquely identifies the particular SCEMA instance to prevent certain23

types of attacks.24

The pointer schedPtr is the SCEMA key schedule pointer described25

earlier in Section 2.8.2.26

Direction indicates either the forward channel by 1, or the reverse27

channel by 0.28

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

31

2.8.3.3. Short Block Encryptor1

Procedure name:2

Short_Block_Encryptor3

Inputs from calling process:4

contentBuf[n] 1 - 6 octets, 1 – 47 bits5

numBits 1 – 47 number of content bits in6

contentBuf buffer7

contentType 1 octet defining voice or message8

entropy[4] 4 octets of possible added entropy9

decrypt 1 bit10

schedPtr pointer to SCEMA key schedule11

direction 1 bit12

Inputs from internal stored data:13

None.14

Outputs to calling process:15

contentBuf [n] 1 - 6 octets, 1 – 47 bits16

Outputs to internal stored data:17

None.18

This encryption primitive block encrypts or decrypts a 1- to 6 octet19

buffer that contains a minimum of 1 bit and a maximum of 47 bits.20

(48 bits are also acceptable but the Short Block Encryptor will never be21

called with this amount since the Long Block Encryptor is used for22

48 bits.)23

The contentType parameter allows the Short Block Encryptor to24

generate unique keystream depending upon whether it is used in voice25

privacy or message encryption. (This primitive is not called in RLP26

encryption (Enhanced Data Encryption).)27

The entropy parameter is used in for message encryption where the28

variables Message Type, and RAND (for DCCH only) provide added29

entropy to the encryption.30

The parameter decrypt is set to 0 for encryption and 1 for decryption. It31

is needed here to determine the instance id number. This number32

uniquely identifies the particular SCEMA instance to prevent certain33

types of attacks.34

The pointer schedPtr is the SCEMA key schedule pointer described35

earlier in Section 2.8.2.36

The direction parameter indicates either the forward channel by 1, or37

the reverse channel by 0.38

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

32

2.8.4. Voice, Message, and Data Encryption Procedures1

(Level 3)2

These top-level procedures interface directly TIA/EIA-136-510 and call3

the Level 2 procedures and, in the case of Enhanced Data Encryption4

only, the Level 1 (SCEMA) procedure.5

2.8.4.1. Enhanced Voice Privacy6

Procedure name:7

Enhanced_Voice_Privacy8

Inputs from calling process:9

coderVer 0, 1, 2, etc.10

speechBuf1[n] n octets, 1 <= n <= 25611

num1aBits n >= 112

speechBufRem [n] n octets, 0 <= n <= 25613

numRemBits n >= 014

decrypt 1 bit15

keyGenerator 1,2,3, etc.16

direction 1 bit17

Inputs from internal stored data:18

None.19

Outputs to calling process:20

speechBuf1[n] n octets, 1 <= n <= 25621

speechBufRem [n] n octets, 0 <= n <= 25622

Outputs to internal stored data:23

None.24

This Level 3 procedure encrypts or decrypts a frame of speech. The25

frame is separated into two buffers, speechBuf1 and speechBufRem,26

containing speech coders' Class 1A and remaining (Class 1B and 2)27

bits, respectively. Class 1A bits are those that are protected by a CRC in28

the speech coder algorithm. The respective numbers of these bits are29

num1aBits and numRemBits.30

The parameter coderVer is set to 0 in TIA/EIA-136-510 and is not used31

here. It comprises a hook in case the CCA would ever need to be32

revised in the future due to a speech coder architecture incompatible33

with this current procedure.34

The parameter decrypt is set to 0 for encryption and 1 for decryption.35

The encryptor and decryptor architectures are not isomorphic and thus36

the decryptor parameter is needed to select the architecture.37

The parameter keyGenerator is currently set to 1 in TIA/EIA-136-51038

to indicate CaveKey1, a key schedule based on the current CAVE39

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

33

algorithm running at its full strength. Internal to this procedure, the1

parameter is used to point to the DTCKey CaveKey1.2

Direction indicates either the forward channel by 1, or the reverse3

channel by 0.4

If the number of Class 1A bits is 48, then this procedure calls the Long5

Block Encryptor for these bits. If the number is greater than 48, the6

excess above 48 are encrypted by the SCEMA KSG. However, prior to7

encryption, their entropy is folded in to the first 48 bits that are8

encrypted by the Long Block Encryptor.9

If the number of Class 1A bits is less than 48, these bits are encrypted10

by the Short Block Encryptor.11

The remaining bits are encrypted by the SCEMA KSG using the12

Class 1A ciphertext as input (entropy).13

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

34

2.8.4.2. Enhanced Message Encryption1

Procedure name:2

Enhanced_Message_Encryption3

Inputs from calling process:4

msgBuf [n] n octets, 1 <= n <= 2565

numBits n >= 16

dcchDTC 1 bit7

rand[4] 4 octets8

msgType 1 octet9

decrypt 1 bit10

keyGenerator 1,2,3, etc.11

direction 1 bit12

Inputs from internal stored data:13

None.14

Outputs to calling process:15

msgBuf[n] n octets, 1 <= n <= 25616

Outputs to internal stored data:17

None.18

This Level 3 procedure encrypts or decrypts the Layer 3 content of a19

message as a whole. The message and its number of bits are denoted by20

the parameters msgBuf and numBits respectively.21

The parameter dcchDTC indicates to this procedure whether messages22

are on the DCCH channel (dcchDTC = 0), or on the DTC channel23

(dcchDTC = 1). For DCCH encryption only, the value rand is used for24

added entropy in addition to msgType (Message Type). For DTC25

encryption, only msgType is used.26

The parameter decrypt is set to 0 for encryption and 1 for decryption.27

The encryptor and decryptor architectures are not isomorphic and thus28

the decryptor parameter is needed to select the architecture.29

The parameter keyGenerator is currently set to 1 in TIA/EIA-136-51030

to indicate CaveKey1, a key schedule based on the current CAVE31

algorithm running at its full strength. Internal to this procedure, the32

parameter is used to point to the DTC CaveKey1 key schedule33

(DTCKey) for DTC messages, and to the DCCH CaveKey1 key34

schedule (DCCHKey) for DCCH messages.35

Direction indicates either the forward channel by 1, or the reverse36

channel by 0.37

If the number of message bits is 48, then this procedure calls the Long38

Block Encryptor for these bits. If this number is greater than 48, the39

excess above 48 are encrypted by the SCEMA KSG. However, prior to40

Interface Specification for Common Cryptographic Algorithms, Revision D.1 09/13/2000

35

encryption, their entropy is folded in to the first 48 bits that are1

encrypted by the Long Block Encryptor.2

If the number of message bits is less than 48, these bits are encrypted by3

the Short Block Encryptor.4

09/13/2000 Interface Specification for Common Cryptographic Algorithms, Revision D.1

36

2.8.4.3. Enhanced Wireless Data Encryption1

Procedure name:2

Enhanced_Data_Mask3

Inputs from calling process:4

mask[len] len octets5

HOOK 32 bits6

len 1 <= len <= 2567

keyGenerator 1,2,3, etc.8

Inputs from internal stored data:9

None.10

Outputs to calling process:11

mask[len] len octets12

Outputs to internal stored data:13

None.14

Enhanced data encryption for 136 wireless data services is provided by15

running SCEMA in the encrypt mode as a KSG. This procedure16

generates an encryption mask of length len octets, between 1 and 25617

inclusive. A pointer for the output value "mask" buffer containing18

keystream mask of length len octets.19

HOOK is a 32-bit value that serves as cryptosync, and is input both to20

SCEMA’s cryptosync input and repeated across its plaintext field.21

The parameter keyGenerator is currently set to 1 in TIA/EIA-136-51022

to indicate CaveKey1, a key schedule based on the current CAVE23

algorithm running at its full strength. Internal to this procedure, the24

parameter is used to point to the DTC CaveKey1.25

Internal to this procedure is a mechanism for differentiating this26

keystream from that produced by other uses of SCEMA in the KSG27

mode. To accomplish, it uses the identifier RlpContent.28

29

	D
	Introduction
	Definitions

	Procedures
	Authentication Key (A-Key) Procedures
	A-Key Checksum Calculation
	A-Key Verification

	SSD Generation and Update
	SSD Generation Procedure
	SSD Update Procedure

	Authentication Signature Calculation Procedure
	Secret Key and Secret Parameter Generation
	CMEA Encryption Key and VPM Generation Procedure
	ECMEA Secrets Generation for Financial Messages Procedure
	Non-Financial Seed Key Generation Procedure
	ECMEA Secrets Generation for Non-Financial Messages Procedure

	Message Encryption/Decryption Procedures
	CMEA Encryption/Decryption Procedure
	ECMEA Encryption/Decryption Procedure

	Wireless Residential Extension Procedures
	WIKEY Generation
	WIKEY Update Procedure
	Wireline Interface Authentication Signature Calculation Procedure
	Wireless Residential Extension Authentication Signature Calculation Procedure

	Basic Wireless Data Encryption
	Data Encryption Key Generation Procedure
	L Table Generation Procedure
	Data Encryption Mask Generation Procedure

	Enhanced Voice and Data Privacy
	SCEMA Key Generation
	DTC Key Generation
	DCCH Key Generation
	SCEMA Secret Generation

	SCEMA Encryption/Decryption Procedure (Level 1)
	Block and KSG Encryption Primitives (Level 2)
	SCEMA KSG
	Long Block Encryptor
	Short Block Encryptor

	Voice, Message, and Data Encryption Procedures (Level€3)
	Enhanced Voice Privacy
	Enhanced Message Encryption
	Enhanced Wireless Data Encryption

