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Abstract. Privacy homomorphisms, encryption schemes that are also
homomorphisms relative to some binary operation, have been studied for
some time, but one may also consider the analogous problem of homo-
morphic signature schemes. In this paper we introduce basic definitions
of security for homomorphic signature systems, motivate the inquiry with
example applications, and describe several schemes that are homomor-
phic with respect to useful binary operations. In particular, we describe
a scheme that allows a signature holder to construct the signature on
an arbitrarily redacted submessage of the originally signed message. We
present another scheme for signing sets that is homomorphic with respect
to both union and taking subsets. Finally, we show that any signature
scheme that is homomorphic with respect to integer addition must be
insecure.

1 Introduction

A cryptosystem f : G → R defined on a group (G, ·) is said to be homomor-
phic if f forms a (group) homomorphism. That is, given f(x) and f(y) for some
unknown x, y ∈ G, anyone can compute f(x · y) without any need for the pri-
vate key. Somewhat surprisingly, this property has a wide range of applications,
including secure voting protocols [8] and multiparty computation [26].

In a series of talks, Rivest suggested the investigation of homomorphic signa-

ture schemes. For instance, the RSA signature scheme is a group homomorphism,
as md

1 · md
2 = (m1 · m2)

d. This property was previously considered to be unde-
sirable and much energy has been spent on eliminating it [5]. The question is
whether this property can be put to positive use instead. More generally, Rivest
asked whether homomorphic signature schemes with positive applications can
be found.

Our goal is to shed light on this question. In the process, we give a formal
definition of what it means to be a secure homomorphic signature scheme (see
Section 3). Then, we construct a redactable signature scheme where, given a
signature Sig(x), anyone can compute a signature Sig(w) on any redaction w of
x obtained by rubbing out some positions of x (Section 4). We give proofs of
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security for this scheme (Appendix A). We present a scheme for signing sets that
allows anyone to compute the signature on the union of two signed sets, and the
signature on any subset of a signed set, and corresponding proofs of security
(Section 5).

We also consider additively homomorphic signature schemes Sig : Z/mZ →
R. We argue that all such schemes are insecure: they unavoidably possess prop-
erties that are likely to render them useless in practice (Section 6). The prob-
lematic properties of additive signature schemes are general and completely in-
dependent of the way the scheme is implemented. In response, we define and
consider semigroup-homomorphic signature schemes, which would permit us to
avoid these bad properties. We pose as an open problem to find a signature
scheme that is semigroup-homomorphic but not group-homomorphic.

2 Related Work

The notion of homomorphic signature schemes was first given by Rivest in a series
of talks on “two new signature schemes” [24]. The first of these signature schemes,
due to Micali and Rivest, is a “transitive signature scheme” for undirected graphs
[19]. In this scheme, given a signature on two graph edges Sig((x, y)), Sig((y, z)), a
valid signature Sig((x, z)) on any edge in their transitive closure can be computed
without access to the secret key. This scheme works only for undirected graphs;
given signatures on the transitive closure edge Sig((x, z)) and the edge Sig((x, y)),
a signature on the “intermediate” edge Sig((y, z)) can be computed It was left
as an open problem to find a similar scheme for directed graphs.

The second signature scheme, due to Rivest, Rabin, and Chari, allows “pre-
fix aggregation” [24]. Given two signatures Sig(p||0) and Sig(p||1) on the two
messages obtained from p by appending a zero and one bit, their scheme al-
lows computation of a signature Sig(p) on p without access to the secret key.
The scheme as presented has a property similar to the transitive graph signa-
ture scheme: the signature Sig(p||1) can be easily computed. from Sig(p) and
Sig(p||0). It was left as an open problem to find a similar scheme that does not
have this property. Rivest also posed the open problem of finding a “concate-
nation signature scheme,” in which given two signatures Sig(x) and Sig(y) a
signature Sig(x||y) on their concatenation can be computed.

Rivest also suggested investigating what other “signature algebras” can be
constructed. In Section 4 we give a construction for “redactable signatures.”
Then in Section 5 we show that RSA accumulators can be used to construct
signatures homomorphic with respect to the union and subset operations.

Homomorphic signature schemes are intriguing in part because homomorphic
cryptosystems have proved to be so useful. Rivest, Adleman, and Dertouzos
noted applications of “privacy homomorphisms” to computing on encrypted
data soon after the introduction of RSA [25]. Peralta and Boyar showed that
an xor-homomorphic bit commitment could be exploited to yield more efficient
zero-knowledge proofs of circuit satisfiability [23]. Feigenbaum and Merritt noted
that a “cryptosystem which is a ring homomorphism on Z/2Z could be used to



implement completely non-interactive secure circuit evaluation” and called such
cryptosystems “algebraic” [14]. Benaloh gave a secure election scheme based on
a homomorphic encryption scheme [12]. Cramer and Damgard use homomor-
phic bit commitments to drastically simplify zero-knowledge proofs [13]. Many
other examples exist in which homomorphic properties are used to construct
cryptographic protocols.

The initial promise of privacy homomorphisms was tempered by a string of
negative results. Ahituv, Lapid, and Neumann showed that any cryptosystem
that is xor-homomorphic on GF (264) is insecure under chosen ciphertext at-
tack [1]. Boneh and Lipton showed that any deterministic cryptosystem that
is a field homomorphism must fall victim to a subexponential attack [10]. They
further conjectured that any field-homomorphic cryptosystem, which they called
“completely malleable,” would prove to be insecure. Brickell and Yacobi broke a
number of candidate constructions of privacy homomorphisms [11]. These nega-
tive results have their analogue in our results of Section 6 showing the triviality
of signature schemes that are group homomorphisms on (Z,+).

Besides RSA, several other homomorphic cryptosystems are currently known.
Goldwasser-Micali encryption takes the form of a group homomorphism Z/2Z →
(Z/nZ)∗ [17], and others have proposed a number of other public-key encryption
schemes that have various useful homomorphic properties [15, 8, 22, 20]. Of par-
ticular interest is Sander, Young, and Yung’s slick construction of an encryption
algorithm that is both and- and xor-homomorphic [26]; they note that this is
the first cryptosystem homomorphic over a semigroup.

Redactable signature schemes are related in both spirit and construction to
the “incremental cryptography” of Goldwasser, Goldreich, and Bellare [3]. Our
notion of privacy for redactable signatures has a parallel in their notion of privacy
for incremental signatures [4].

3 Definitions

We define the notion of a homomorphic signature scheme as follows. A spec-
ification of a signature scheme includes a message space M, a set of private
keys K, a set of public keys K′, a (possibly randomized) signature algorithm
Sig : K×M → Y, and a verification algorithm Vrfy : K′×M×Y → {ok, bad} so
that Vrfy(k′, x,Sig(k, x)) = ok for all x ∈ M when (k, k′) is a matching private
key and public key. As a notational matter, for conciseness we often omit the
private and public keys, writing Sig(x) instead of Sig(k, x) and Vrfy(x, s) instead
of Vrfy(k′, x, s) when this abbreviation will not cause confusion. Also, for a bi-
nary operation � : M×M → M and a set S ⊆ M, we let span�(S) denote the
least set T with S ⊆ T and x � y ∈ T for all x, y ∈ T .

Definition 1. Fix a signature scheme Sig : K × M → Y, Vrfy : K′ × M ×
Y → {bad, ok} and a binary operation � : M × M → M. We say that Sig

is homomorphic with respect to � if it comes with an efficient family of binary

operations ⊗k′ : Y × Y → Y so that y ⊗k′ y′ = Sig(x � x′) for all x, x′, y, y′

satisfying Vrfy(x, y) = Vrfy(x′, y′) = ok.



As an example, if (G,×G) and (R,×R) are two groups and we have a signature
scheme Sig : K × G → R that is also a group homomorphism from G to R for
each k ∈ K, then this will qualify as a signature scheme that is homomorphic
with respect to ×G, since we may take y ⊗k′ y′ = y ×R y′.

This definition requires that signatures derived via ⊗k′ be indistinguishable
from signatures generated by the private key holder, which we refer to as history-
independence. This precludes trivial schemes that, for example, allow the ordered
pair (y, y′) to serve as a signature on x � x′. Although the definition above
is for deterministic signature schemes, extending it to probabilistic schemes is
straightforward; one can simply require that the distribution of y ⊗k′ y′ be in-
distinguishable from that of Sig(x � x′).

For homomorphic signature schemes, we need a new definition of security.
The standard notion of security against existential forgeries is too strong: no
homomorphic signature scheme could ever satisfy it, because given two signa-
tures on messages x and x′, one can generate a signature on the new message
x′′ = x � x′ without asking the signer for a signature on x′′ explicitly.

Fortunately, there is a natural extension. Suppose the adversary has obtained
signatures on queries x1, . . . , xq. Such an adversary can deduce signatures on
xi�xj , (xi�xj)�xk, and so on; in other words, no message in span�(x1, . . . , xq)
seems to be safe. Therefore, we will require that no adversary be able to deduce
a valid signature on anything outside span�(x1, . . . , xq).

Definition 2. We say that a homomorphic signature scheme Sig is (t, q, ε)-
secure against existential forgeries with respect to � if every adversary A making

at most q chosen-message queries and running in time at most t has advantage

AdvA ≤ ε. The advantage of an adversary A is defined as the probability that,

after queries on the messages x1, . . . , xq, A outputs a valid signature 〈x′, y′〉 on

some message x′ /∈ span�(x1, . . . , xq). In other words, AdvA = Pr[ASig(k,·) =
〈x′, y′〉 ∧ Vrfy(x′, y′) = ok ∧ x′ /∈ span�(x1, . . . , xq)].

In some cases, we might want an additional guarantee that the operation �
does not allow the adversary to create too many new signatures. Consider the
additive signature schemes broken later in Section 6: They are good candidates to
satisfy Definition 2, yet knowledge of a single signature could allow an attacker
to sign every other possible message. Therefore, we introduce the concept of
security against random forgeries:

Definition 3. The signature scheme Sig : K × M → Y is said to be (t, q, ε)-
secure against random forgeries if every adversary A making at most q chosen-

message queries and running in time at most t has advantage AdvA ≤ ε. The

advantage of an adversary is the probability that it can output a valid signature

on a new message x′ chosen by the referee uniformly at random from M and

independently of all the adversary’s chosen-message queries. In other words,

AdvA = Pr[Vrfy(x′, ASig(k,·),cx′ ) = ok] where cx′ is the constant function that

always returns x′ and where the adversary is not allowed to make any further

queries to its signing oracle after looking at the value x′.



For example, one might reasonably conjecture that textbook RSA signatures are
secure against random forgeries.

The security of a homomorphic signature scheme seems to depend on two
related notions: the size of span�(x1, . . . , xq) for small sets of messages, and
the difficulty of the decomposition problem, i.e. given x ∈ span�(x1, . . . , xq),
find an explicit decomposition of x in terms of the xi’s and the � operation. If
decomposition is hard, then the scheme may be secure even if the spans of small
sets of messages are quite large, as is the case with RSA. The scheme may also
be secure if the decomposition problem is easy, but most sets of messages only
span a small portion of the message space. Redactable signatures are just such a
scheme. The trouble occurs when a scheme admits both easy decomposition and
large spans. Indeed, this is exactly what renders additive schemes so vulnerable
to random forgeries.

One can easily generalize the above notions to operations that take an arbi-
trary number of operands, and to schemes that are simultaneously homomorphic
with respect to more than one operation.

We can also consider signature schemes that are homomorphic with respect
to a number of interesting mathematical structures. If (G,×G) is a group, then
we say that Sig : G → Y is a group-homomorphic signature scheme if it is homo-
morphic with respect to the binary operator ×G as well as the unary inversion
operation x 7→ x−1. If (M,×M ) is a semigroup1, then we say that Sig : M → Y
is a semigroup-homomorphic signature scheme if it is homomorphic with respect
to the binary operator ×M . If (R,×R,+R) is a ring, we say that Sig : R → Y is
a ring-homomorphic signature scheme if it is homomorphic with respect to both
×R and +R. Boneh et al. have shown that every2 field-homomorphic signature
scheme Sig : F → Y can be broken in subexponential time [10].

4 Redactable Signatures

The problem. Redactable signatures are intended to model a situation where a
censor can delete certain substrings of a signed document without destroying
the ability of the recipient to verify the integrity of the resulting (redacted)
document. In particular, we allow the censor to replace arbitrary bit positions in
the document with a special symbol ] representing the location of the deletions.
(Our construction can be readily generalized to any alphabet, so that the signer
can limit redactions to whole words, sentences, etc., but for simplicity we describe
only the case of bit strings here.)

Redactable signatures might have several applications. They permit deletion
of arbitrary substrings of a document, and thus might be useful in proxy cryp-

1 Recall that a semigroup is a set M together with an associative binary operator ×M

with the property that M is closed under ×M .
2 Boneh et al. noted that their attack applies to all deterministic field-homomorphic

encryption schemes, but not to randomized encryption schemes. We observe that
their result also applies to all field-homomorphic signature schemes, whether the
signature scheme is deterministic or randomized.



Alice spends 60 hours a
week trying to find ways
to add value to our bot-
tom line, and never have
I known her to shirk her
duties. Alice is a true as-
set to our company, and I
cannot think of one per-
son better suited to your
requirements.

Alice spends 60 hours a
week trying to find ways
to shirk her duties, and I
can think of one person
better suited to your re-
quirements.

Alice spends 60 hours a
week trying to find ways
to ]]]]]]]]]]]]]]]]]]]]]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]]] shirk her duties ]]]]]]
]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]], and I can]]] think of
one person better suited
to your requirements.

Fig. 1. An illustration of the need to disclose the location of redactions. The left
shows a sample document that one might sign with a redactable signature scheme.
The middle shows one substring that might be obtained if the location of redactions
is not made explicit in the result; note how the meaning of the original document has
been violated. The right shows the corresponding redaction obtained if deletions are
disclosed explicitly; note how the attempted trickery is revealed by this countermeasure.
Because of this potential for this sort of semantic attack when the location of deletions
are not made explicit, as illustrated here, all our constructions follow the model shown
on the right of making deletions explicit.

tography or incremental cryptography. As their name suggests, they also permit
redaction and censorship of signed records with an untrusted censor: the censor
cannot forge documents, except those obtained by redaction of a legitimately
signed document.

Semantic attacks and our formulation of redaction. Making the problem state-
ment more precise exposes a subtle trap here. A natural first attempt at a defini-
tion might require that, given a signature Sig(x) on x, one can obtain a signature
Sig(w) on any substring w of x that is obtained by deleting some of the symbols
in x. However, this formulation of the problem has a serious limitation: such a
scheme will conceal the presence of deletions, which introduces the risk of seman-
tic attacks. Without indication of where the redaction has occurred, an attacker
might legally be able to truncate the end of one sentence, delete the beginning
of the next, and slice them together to get a message the sender would not have
authorized. For an example, see Figure 1. To defeat semantic attacks, we instead
use a formulation where the presence of redacted segments are made explicit.

We define the concept more formally as follows. Let us take Σ = {0, 1, ]}.
We define a partial order � on Σ so that ] � 0, ] � 1, and a � a for each a ∈ Σ
(and no other non-trivial relations hold). This induces a partial order � on Σ∗

by pointwise comparison, namely, w1 · · ·wn � x1 · · ·xn holds if wi � xi for each
i. We say that the document w is a redaction of x if w � x, or in other words,
if w can be obtained from x by replacing some positions of x with the ] symbol.
The signature scheme Sig : Σ∗ → R is called redactable if we can derive from a
signature Sig(x) on x a signature Sig(w) on any redaction w � x we like, without
the help of the signer.



Note that, in this model, we do not attempt to hide the location of the cen-
sored portions of the documents. Thus, a signature Sig(w) on a redaction w of
x may legitimately reveal which portions of x were deleted, and specifically, the
presence and location of redacted segments is protected from tampering by the
signature. However, it does not reveal the previous contents of the redacted por-
tions of the document. We expect that this privacy property may be important
to many applications.

Redactable signatures may be viewed as an instance of a homomorphic sig-
nature scheme endowed with operations Di : Σ∗ → Σ∗ that replace the i-th bit
position with a ] symbol. The requirement that signed documents be redactable
is equivalent to requiring that our signature scheme be homomorphic with re-
spect to these unary operators.

A trivial construction. There is one obvious way to build redactable signatures.
We fix a traditional signature scheme Sig0; no special homomorphic properties
are required from Sig0. We assume for simplicity that our base signature scheme
permits message recovery, but this assumption is not essential. In the trivial
construction, to sign a message x of length n, we generate a fresh key pair (s, v)
for some secure conventional signature scheme, and then the signature on x is

Sig(x) = 〈Sig0(n, v), s(1, x1), . . . , s(n, xn)〉.

Verification is straightforward.
The key pair essentially serves as a document ID. Without it, an attacker

could replace the ith component of any signed message with the ith component
of any other signed message, which we do not wish to allow.

To redact a signed message, we simply erase the appropriate segments of the
message and the corresponding positions in the signature. For instance, redacting
the first symbol in Sig(x) yields a signature 〈Sig0(n, v), s(2, x2), . . . , s(n, xn)〉.
This scheme supports a privacy property: redacted signatures do not reveal the
redacted parts of the original message. We can see that they reveal the locations
that have been redacted, much like typical redaction of paper documents does,
but this is all that is leaked.

However, this trivial scheme has a serious limitation: the signature Sig(x)
is very long. If s produces m-bit signatures, then the construction above yields
signatures of length mn+O(1), which is likely to be large compared to the length
of the message, n. Therefore, the challenge is to find a scheme with much shorter
signatures.

Our construction. We describe how to build a secure redactable signature scheme
out of any traditional signature scheme. The main idea is to combine Merkle hash
trees [18] with the GGM tree construction for increasing the expansion factor
of a pseudorandom generator [21]. We first generate a pseudorandom value at
each leaf by working down the tree (using GGM), then we compute a hash at
the root by working up the tree (using Merkle’s tree hashing).

We describe in detail how to sign a message x of length n. First, we arrange
the symbols of the message at the leftmost leaves of a binary tree, with each leaf
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Fig. 2. A redactable signature on the message x = 〈x000, x001, . . . , x111〉. The message
is signed in three phases: first, we generate k-values by recursing down the tree with the
PRG G; then, we generate v-values by recursing up the tree with the hash H; finally,
we sign vε using our conventional signature scheme. To avoid cluttering the diagram,
we show the downward phase only on the left branch of the tree, and the upwards
phase only on the right branch of the tree, but the full scheme requires we traverse
both branches in both directions.

at depth dlg ne. We identify nodes of the tree with elements of {0, 1}∗, so that
a node η has children η0 and η1, and the empty string ε denotes the root node.
Let G : K → K × K be a length-doubling pseudorandom generator, let H be
a cryptographic hash function, and pick kε ∈ K uniformly at random. We use
a three-phase algorithm (see Figure 2, which shows phase one on the left and
phase two on the right):

Expansion: We use the GGM tree construction to associate a key kη to each
node η. In other words, we define a key for each node of the tree by the
recursive relation 〈kη0, kη1〉 = G(kη).

Hashing: We then compute a hash value v` for each leaf a as v` = H(0, k`, x`)
and apply the Merkle hash construction, i.e., we recursively compute vη =
H(1, vη0, vη1) (or, if only a left child exists, H(1, vη0)).

Signing: Finally, we sign the root of the hash tree using our base signature
scheme Sig0, and compute the signature on x as Sig(x) = 〈kε,Sig0(vε)〉.

Verification is straightforward, since given kε and x we can compute vε and check
the signature.

Next, we describe how to redact a signed message. To erase position ` from a
signed message x, we need to reveal v`. At first sight, revealing v` = H(0, k`, x`)
would appear to be very dangerous, since given kε we can compute k` and then
iterate over all possible values of x` to learn the value of the erased symbol. This
would violate the secrecy property.

To restore secrecy, we take advantage of the GGM tree. When we erase x`, we
will also erase kε, and reveal only what is needed to verify the signature without
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Fig. 3. A redaction of the signature on x, with the two bits x100 and x101 deleted. Like
in Fig. 2, we show only part of the signature process, to avoid cluttering the diagram.

leaking k`. The notion we need is as follows: define the co-nodes associated to
a leaf ` to be the siblings of the nodes along the path from ` to the root. We
reveal kη at each co-node η associated to `, as this is exactly what is needed
to check the resulting signature. Thus, redacting x` from Sig(x) would yield
〈v`, {kη : η a co-node of `},Sig0(vε)〉. Note that there are at most lg n co-nodes
associated to any single leaf.

We can repeat the above procedure to further redact an already-redacted sig-
nature, if we like. In the case of redactions in consecutive parts of the document,
we compact the signature by using the tree structure: if the signature contains
simultaneously vη0 and vη1 for some η, then we replace these two quantities with
the single value vη, and we similarly replace kη0, kη1 with kη. This both shortens
the signature and hides the order in which redactions were performed, ensur-
ing a sort of path-independence property. Thus, though signatures will grow in
length, the length may grow only slowly if there is some locality to the sequence
of redactions. At worst, each consecutive segment of erasures of length n′ from
a message of length n adds O(lg n′) hash values and O(lg n′) key values to the
signature.

This signature scheme produces signatures that are relatively short. If Sig0

yields m-bit signatures and if we use m′-bit hash values and keys, then an
unredacted signature is only m+m′ bits long. This is a constant in n, the length
of the message. After erasing s segments, each of length at most n′, the signature
will be m + O(sm′ lg(nn′)) bits long. In general, signatures could be as long as
m + O(nm′) bits after many redactions, but we can expect that in practice the
number of erased segments will typically not be too large and hence signatures
should often be quite short. Therefore, this is a considerable improvement over
the trivial construction outlined earlier.

This signature scheme also has an additional homomorphic property. For a
fixed message x, we can form the lattice of substrings Lx = {w ∈ Σ∗ : w � x},



where the join vtv′ is the unique least w ∈ Lx satisfying v � w and v′ � w, and
the meet is defined dually. We note that given two redactions Sig(v) and Sig(v′)
of a common signature on a message x, we can compute signatures Sig(vtv′) and
Sig(vuv′) on their join and meet. In other words, our scheme is also homomorphic
with respect to the binary operations t and u. We imagine that this might be
useful in some applications.

Security analysis. We show in Appendix A that this construction is secure
against existential forgeries under reasonable cryptographic assumptions.3 See
the appendix for details.

5 Set-Homomorphic Signatures

We now turn to operations on sets and derive a scheme which simultaneously
supports the union and subset operations. More precisely, the scheme allows
anyone possessing sets U1, U2 and Sig(U1),Sig(U2) to compute Sig(U1 ∪U2) and
Sig(U) for any U ⊆ U1. Note that these two operations, union and subset, can
be combined to create many others, such as set difference, symmetric difference,
and intersection, so this scheme seems particularly powerful. As an example
application, at the end of this section we will construct an alternate redactable
signature scheme which has many advantages over the one presented in Section 4.

The construction is based on the accumulator technique [9]. To begin, let h
be a public hash function so that, for all x, h(x) is uniformly distributed over
the odd primes less than n [16]. If we extend h to sets via h(U) =

∏

u∈U h(u),
then h(U1∪U2) = lcm(h(U1), h(U2)), assuming there are no h-collisions between
elements of U1 and U2. Each user creates a rigid RSA modulus n and v ∈ (Z/nZ)∗

selected uniformly at random. Recall that an RSA modulus n = pq is rigid if
p−1
2 and q−1

2 are prime and |p| = |q| [9]. By choosing n this way, we ensure that
gcd(h(x), ϕ(n)) = 1 for almost all x. To sign a set U , one computes Sig(U) =

v
1

h(U) mod n. Note that since h(U) is relatively prime to ϕ(n), there is exactly
one solution y to the equation yh(U) = v. To verify a signature y on a set U , one
need only check that yh(U) = v mod n.

Given U1, U2 and signatures v
1

h(U1) , v
1

h(U2) , computing the signature on U1 ∪
U2 is easy. First use the Euclidean algorithm to find a and b such that a ·h(U1)+

b · h(U2) = gcd(h(U1), h(U2)). Then (v
1

h(U1) )b(v
1

h(U2) )a = v
1

lcm(h(U1),h(U2)) , which
is the desired signature. If U ⊆ U1 then Sig(U1 \U) = Sig(U1)

h(U), so computing
subset signatures is also straightforward.

As with the redactable signature problem, we’d like to show this scheme is
resistant to forgeries and that it satisfies the history-independence requirement
for homomorphic signature schemes. The latter is clearly satisfied since the sig-
nature on a set U ′ is independent of how we obtain that signature: starting
with a signature Sig(U1) on U1 and then removing the elements in U2 to get

3 We do not address security against random forgeries, as it is not clear what is the
right distribution on the message space.



Sig(U1)
h(U2) yields exactly the same result as asking for the signature on U1 \U2

directly, i.e., Sig(U1)
h(U2) = Sig(U1 \U2). A similar property holds for the union

operation, and so this scheme is history-independent.
The resistance of this scheme to forgeries requires a more detailed security

analysis, but basically it rests on the difficulty of computing kth roots modulo
an RSA modulus and on the randomness of the hash function.

Before we give the proof, we should state clearly the parameterization of the
difficulty of the RSA problem. We assume that RSA behaves as a good trapdoor
permutation, as others have suggested before [6, 7]. This assumption appears to
be weaker than the so-called Strong RSA assumption [2].

Definition 4. Let Hk = {pq : p and q are safe primes, p 6= q, and |p| = |q| =
k}. We say RSA is a (t, εr)-secure trapdoor permutation if for any adversary

A with running time less than t, we have Pr[A(n, e, xe) = x] < εr, where the

probability is taken over the choice of n ∈ Hk, e ∈ (Z/ϕ(n)Z)∗, x ∈ (Z/nZ)∗,
and the coin tosses of A.

The following theorem relates the security of the set-homomorphic signature
scheme to the security of RSA, and shows essentially that if the signature scheme
is insecure, then an attacker could exploit that weakness to break RSA without
too much more work. Note that the theorem guarantees security even when
the adversary can make a number of adaptively chosen signature queries, which
seems to be an extension of previous results.

Theorem 1. Let h be a random oracle as above. Assume that RSA is a (t, εr)-
secure one-way function. Then the set-homorphic signature scheme Sig defined

above is (t′, qh, ε)-secure against existential forgery with respect to subset and

union operations given that the total number of hash oracle queries performed is

less than qh, where ε ≈ qhεr log n + q2
h log n/n and t′ ≈ t. 4

Proof. (sketch) We give a proof by contradiction. Assume the above theorem
is false, meaning there exists an adversary A which can (t′, ε)-break the set-
homomorphic signature scheme Sig. Assume after A performs a number of ran-
dom oracle queries and obtains signatures on sets x1, . . . , xqs

, A outputs a forgery
on x∗ where x∗ is not in the span of x1, . . . , xqs

under subset and union oper-
ations. This means there exists an element y ∈ x∗ such that y 6∈ xi, for all
1 ≤ i ≤ qs, and A knows u such that uh(y) = v. There are two cases:

– We have h(y) 6= h(y′) for all y′ ∈ ∪1≤i≤qs
xi.

– We have h(y) = h(y′) for some y′ ∈ ∪1≤i≤qs
xi. This happens with probability

at most q2
h log n/n (by the prime number theorem and the birthday paradox).

If the first case happens with probability higher than qhεr log n, we show as
following that we can construct an adversary B(n, e, z) using A which can (t, εr)-
break RSA. In particular, if e is prime, B runs the following game using A.
(Otherwise, the simulation fails; this happens with probability at most about
1/ log n, by the prime number theorem.)
4 The total number of hash oracle queries include the ones made by A and the ones

made by the signing procedure.



– B first selects uniformly randomly qh primes p1, . . . , pqh
not equal to e. Then

B sets f =
∏

1≤i≤qh
pi and v = zf mod n. Due to the choice of n, we have

gcd(f, ϕ(n)) = 1 with overwhelming probability, and thus the map z 7→ zf

mod n is bijective on (Z/nZ)∗. This means that v is uniformly distributed
on (Z/nZ)∗, since z is, so we can feed v as an input to A and it will have
the right distribution. B also selects a random integer k ∈ {1, . . . , qh}.

– B constructs the hash oracle as follows. Given a hash oracle query on element
w, if w has been queried before, then returns the previous corresponding
answer. For the j-th unique hash oracle query wj , if j 6= k, then return the
prime pj ; otherwise, return e.

– B constructs the signing oracle that A queries as follows. Given a signing
query on a set of m elements U = {a1, . . . , am}, B queries the hash oracle
to obtain h(a1), . . . , h(am). If for some 1 ≤ i ≤ m, h(ai) = e, then abort;

otherwise, return b = zf/(
∏

1≤i≤m
h(ai)). It is easy to see that b is a valid

signature on the set U .
– If at the end of the game, A outputs an existential forgery on a set of elements

that includes an element y such that h(y) = e, then B can learn from A’s
forgery a value u satisfying uh(y) = v = zf . Because e is prime, gcd(e, f) = 1,
and we can compute α and β such that αe + βf = 1 using the Eulidean
algorithm. Thus z = (uβzα)e, and B outputs uβzα as the e-th root of z.
Otherwise, abort the game.

If A outputs an existential forgery and e is prime, the probability that B succeeds
is at least 1/qh. So if there exists an adversary A that (t′, ε)-breaks the set-
homomorphic signature scheme, we can construct an adversary B that (t, εr)-
breaks RSA.

The set-union scheme suggests another solution to the redactable document
signature problem. To sign the document x = (x1, . . . , xk), first select a random
unique document identifier, kx, and then sign the set of triples D = {(kx, i, xi)},
say y = Sig(D). The complete redactable signature is (kx, y), and verification is
straightforward. To compute the signature on the message with word i redacted,
simply compute y′ = Sig(D \ {(kx, i, xi)}) = yh(kx,i,xi), and the new signature
is (kx, y′). Note that this scheme also reveals the locations of the redactions,
preventing the semantic attacks described in Section 4. Not only is this scheme
much simpler to implement and easier to understand than our prior redactable
scheme, the signatures produced in this scheme are of constant length.

6 Additive Signature Schemes

We describe next a number of schemes that we have studied in our search for an
additive signature scheme. All of them turn out to be insecure, and in interesting
ways. More precisely, the schemes we examine all have an undesirable property
that is likely to make them useless in practice: given signatures on a small set of
known messages, we can forge signatures on all other possible messages. Thus,
such schemes are insecure against random forgeries as described in Definition 3.



Constructions built from multiplicative signature schemes. If we have a multi-
plicative signature scheme Sig× : G → R as well as a group homomorphism
ϕ : Z/mZ → G from the additive group Z/mZ to the multiplicative group G,
then a natural candidate for an additive signature scheme Sig+ : Z/mZ → R
is Sig+ = Sig× ◦ ϕ. For instance, we can instantiate Sig× with RSA. In this
case, G = (Z/nZ)∗, and every homomorphism from Z/mZ to (Z/nZ)∗ takes the
form ϕ(x) = gx (mod n) for some g ∈ G, so our construction takes the form
Sig+(x) = gxd (mod n).

To see why any such scheme must be insecure against random forgeries, sup-
pose Sig+ : Z → G is a group-homomorphic signature scheme. Then Sig+ is en-
tirely determined by Sig+(1). Thus, if we can recover a few messages m1, . . . ,mk

such that gcd(m1, . . . ,mk) = 1, then since there exist a1, . . . , ak ∈ Z such that
∑

i aimi = 1, we can compute Sig+(1) =
∑

i aiSig+(mi). Given this information,
we can compute Sig+(m) = mSig+(1) for any m. This attack easily extends to
group homomorphic signatures Sig+ : Z/nZ → G by lifting to Z, applying the
Euclidean algorithm, and projecting back down to Z/nZ. Since any small set of
messages will likely have gcd 1, this scheme is vulnerable to random forgeries
after only a few messages have been signed.

These weaknesses are very general. In particular, they apply to almost any
instance of the construction Sig+ = Sig× ◦ ϕ. As another important example,
every additive signature scheme that forms a group homomorphism is insecure
against random forgeries.

It is perhaps counterintuitive that multiplicative signature schemes are plen-
tiful while fully-additive schemes do not exist. The explanation seems to be the
fact that Z/mZ has a Euclidean algorithm, but (Z/nZ)∗ does not. In other
words, it is not that the span is larger in Z/mZ, but that the decomposition
problem is easy in Z/mZ but hard in (Z/nZ)∗.

One might imagine that the problem is the need to be homomorphic with
respect to both addition as well as negation, and thus one idea might be to
look for a scheme that respects only the addition operator but not the negation.
In other words, given Sig+(x),Sig+(y), we still want to be able to compute
Sig+(x + y), but it should be hard to compute Sig+(−x) from Sig+(x). Note
that the problems with additive signatures arise because one can find a, a′ ∈ Z

so that ax+a′x′ = 1 and then compute Sig+(1) = Sig+(ax)×Sig+(a′x′); yet one
of a, a′ will necessarily be negative. If we can somehow ensure that computing
Sig+(−x) from Sig+(x) is hard, then the Euclidean algorithm will no longer
apply, and the above attacks will fail. This suggests that we may want to look
for an additive signature scheme without inverses (a semigroup-homomorphism),
as such a scheme would resist the attacks described so far.

Further challenges. Yet even an additive signature scheme without inverses still
has some properties that might not be expected. In particular, there is the prob-
lem that signatures can always be forged on all large enough messages, given
signatures on two messages m,m′. This is because the equation

am + a′m′ = x (in Z)



typically has solutions with a, a′ ≥ 0 when x ≥ lcm(m,m′), and in this case a
signature on x can be obtained from signatures on m,m′.

More generally, if we have signatures Sig(m1), . . . ,Sig(mk), then we can forge
a signature Sig(x) whenever we can write x in the form x = a1m1 + · · · + akmk

for some known a1, . . . , ak ∈ Z≥0. This is a subset sum problem, and the issue
is that if the mi are small enough, the subset sum problem is easy to solve.
So our only hope is to choose additive signatures without inverses, only sign
messages large enough that subset sum is hard (require mi ≥ ` for some lower
bound `), and refuse to accept unusually large messages (enforce mi � `2) in
the verification algorithm.

Additive schemes in higher dimensions. More generally, we could look for an
additive scheme Sig+ : (Z/mZ)d → R in dimension d > 1. Unfortunately, this
does not seem to offer much opportunity to design a secure signature scheme,
either.

Although increasing the dimension does make more work for the attacker, a
slight extension of the previous remarks still applies.

Observation 1 In any additive signature scheme on the lattice L = (Z/mZ)d,

if one can obtain signatures Sig(x1), . . . ,Sig(xd), where x1, . . . , xd are a basis for

L, then one can succeed at any random forgery.

Knowing the signatures on a basis is useless if computing the representation of
a given message in that basis is hard. If we could compute the signatures of the
standard basis elements given the signatures on the elements of another basis,
then committing random forgeries would be easy. Note that the elements of
the standard basis are the shortest vectors in the lattice Z

d, so lattice reduction
techniques may be used to discover representations of the standard basis elements
in terms of messages with known signatures. The theoretical bounds on the
length of the shortest vector returned by LLL are not very tight, but in practice
it can find a representation of the standard basis of (Z/mZ)d with only (1 + ε)d
input vectors. Thus, we only need to collect (1 + ε)d signed messages before we
can commit random forgeries with ease.

Therefore, it seems to be a challenging open problem to find a secure additive
signature scheme.

7 Open Problems

Set-homomorphic signatures. We may look for a set-homomorphic signature
scheme that is homomorphic with respect to operations other than union and
subset. For example, consider the following construction: Let Sig× : G → R be
an arbitrary multiplicative signature scheme on some group G. For a set U =
{x1, . . . , xk}, define the hash function fh(U) = h(x1) · · ·h(xk), where h : X → G
is a cryptographic hash function on elements in X . Then Sig = Sig× ◦ fh is a
signature scheme with the property that with signatures, Sig(U) and Sig(V ),
on two disjoint sets U and V , one can compute the signature on their union,



Sig(U ∪V ) = Sig(U)× Sig(V ). If U ⊆ V , one can also compute the signature on
their difference, Sig(V \ U) = Sig(V ) × Sig(U)−1.

We gave another example of a set-homomorphic scheme, based on RSA ac-
cumulators, in Section 5. One interesting question is whether we can design a
signature scheme that is homomorphic only with respect to the union operation.

Concatenable signatures. Let Sig : {0, 1}∗ → R be a signature scheme. We
say that it is a concatenable signature scheme if, given Sig(x),Sig(y), one can
compute (without help from the signer) a signature Sig(x||y) on the concate-
nation of x and y. In other words, a concatenable signature scheme should be
homomorphic with respect to the semigroup ({0, 1}∗, ||) of bit-strings with the
concatenation operator ||. Rivest has asked [24]: can we design a concatenable
signature scheme?

Semigroup signatures without inverses. Giving an example of a secure semigroup-
homomorphic signature scheme seems to be an intriguing open problem that is
suggested by this work. We have pointed out instances of this problem sev-
eral times throughout this paper. Micali and Rivest asked whether there exists
a transitive signature scheme on directed graphs [19], and this domain has a
semigroup structure. One might seek a redactable signature scheme support-
ing only redaction but not the join operation. An additive scheme that doesn’t
respect subtraction might have a chance of being secure. A set-homomorphic
scheme that allows only the union operation (but not subsetting) would have
a semigroup-homomorphic property, as would a concatenable signature scheme.
More generally, we suspect that any scheme that is semigroup-homomorphic but
not group-homomorphic might yield insights into these open problems.

8 Conclusions

Homomorphic signature schemes present a promising new direction for research.
Since such schemes necessarily do not satisfy traditional definitions of security,
we have proposed new definitions of security for these new schemes. We have
shown that a variety of homomorphic signature schemes can be designed. We
also examined limits on their existence, showing that, for example, no additively
group-homomorphic scheme can ever be secure against random forgeries. Per-
haps most importantly, we have suggested several open problems that, if solved,
might provide useful new schemes supporting a variety of applications.
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A Security analysis for the tree redaction scheme

The combination of redaction and randomization in the tree redaction scheme intro-
duces one tricky aspect into the definition of security. The adversary might choose a
message x ∈ {0, 1}∗, and though the censor might be unwilling to reveal Sig(x), the
adversary might be able to gain access to a redacted signature Sig(w) on some message
w � x of the attacker’s choice. In this case our security analysis should ensure that the
attacker cannot use this partial knowledge to obtain, e.g., a signature Sig(x) on the full
message x. Therefore, in our model we give the adversary access to two different oracles,
denoted R and S. Invoking R(x) denotes registration of a chosen message x ∈ {0, 1}∗,
and the registered messages are stored in a list x1, x2, . . . , xq. Calling S(i, w) returns
the signature Sig(w) on the redacted message w ∈ Σ∗, if w � xi; otherwise, if w is
not a valid redaction of the message xi specified in the i-th call to R, the computation
aborts. Let W i denote the join of all values w that appear in some oracle query of
the form S(i, w). If an adversary can output a signature on a message that is not a
redaction of W i for some i, we say that the adversary has found an existential forgery.

Theorem 2. Let G be a (t, εG)-secure pseudorandom generator, H a (t, pH)-collision-

resistant hash function, and Sig
0

a conventional signature scheme that is (t, q, pS)-
secure against existential forgery. Suppose that Fk(x) = H(0, k, x) is a (t, q, εH)-secure
pseudorandom function. Then the redactable signature scheme Sig defined above for

messages of length at most n is (t′, q, p′)-secure against existential forgery with respect

to redaction, where p′ = qdlg neεG + nqεH + pS + pH + 2nq/2m′

and t′ ≈ t.

Proof. (sketch) Consider any adversary that attempts to break the resulting modified
scheme by exhibiting existential forgeries, i.e., by finding a valid signature on a message
w∗ that is not a redaction of the join of its previous queries. We let xi denote the i-th
message registered with R, ki

η, vi
η denote the key and hash value at node η, and we



introduce the notation ui
η for the input to the hash function at η so that vi

η = H(ui
η).

For example, ki
ε denotes the key randomly chosen for use with xi and its redactions,

and vi
ε denotes the root of the hash tree on the signature for message xi.

Suppose the adversary forges a signature
(

{v∗

` }, {k
∗

η}, Sig (v∗

ε )
)

on w∗. If v∗

ε 6= vi
ε for

all i, then we have found an existential forgery of Sig
0
, which by assumption happens

with probability at most pS . Therefore, we assume that for some i we have v∗

ε = vi
ε. Let

T ∗ denote the tree corresponding to w∗, i.e., the leaf nodes corresponding to unredacted
symbols in w∗ along with all their ancestors.

Thanks to the properties of Merkle tree hashing, we see that T ∗ must be a sub-tree
of the tree corresponding to xi. (Otherwise, there is some node ` that is a leaf node
in the tree for xi but is an internal node in T ∗, but then we have a hash collision
H(u∗

` ) = H(ui
`) since u∗

` starts with a 1 and ui
` starts with a 0, which contradicts the

collision-resistance of H.) Similarly, the leaves of T ∗ must form leaves in the tree for
xi, and the internal nodes in T ∗ form internal nodes in the tree for xi.

Moreover, the hash pre-images uη must satisfy u∗

η = ui
η for each η ∈ T ∗. This tells

us that v∗

η = vi
η for all η ∈ T ∗. It also tells us that k∗

` = ki
` and w∗

` = xi
` for each leaf

node `. This shows that w∗ is a redaction of xi.
The only case left to worry about is that possibly w∗ includes some symbol not

present in W i (recall that W i denotes the join of the redactions of xi that were queried
under oracle S). In this case, there is some leaf node ` ∈ T ∗ so that w∗

` = xi
` but ` is

not found in the tree corresponding to W i.
In this case, the forged signature must reveal kη where η is some ancestor of `. But

now we can note that kη was never disclosed by any of the oracle queries (nor was any
of the key values at η’s ancestors). We argue that this would constitute a break of G.

We can imagine replacing the key kη and the keys at each of its descendant nodes
with truly random values, chosen independently of everything else. If any adversary
can recognize this substitution with advantage better than qdlg neεG, then according to
the proof of security for the GGM tree construction [21], they can distinguish G from
random with advantage better than εG; thus we can assume that this substitution
makes no noticeable difference.

Now the only values related to kη that are disclosed is vi
` = H(0, k`, x

i
`) for leaves `

that are descendants of kη. But, since H(0, k, ·) is a good PRF, we can in turn imagine
replacing each such vi

` by truly random values, chosen independently of everything
else, and no attacker can recognize this substitution with advantage better than nqεH

without breaking the PRF assumption.
Since the adversary must present the value kη in the forged signature, this means

that the adversary has guessed the value of k∗

η, even though k∗

η has never been disclosed
and was chosen independently of everything else. We can bound the probability that
this happens by 1/2m′

per node, and summing over all the nodes gives at most 2nq/2m′

.
Adding up each of these distinguishing probabilities yields the claimed bound.


