
Secure Verification of Location Claims∗

Naveen Sastry
University of California,

Berkeley

nks@cs.berkeley.edu

Umesh Shankar
University of California,

Berkeley

ushankar@cs.berkeley.edu

David Wagner
University of California,

Berkeley

daw@cs.berkeley.edu

ABSTRACT
With the growing prevalence of sensor and wireless networks
comes a new demand for location-based access control mech-
anisms. We introduce the concept of secure location verifi-
cation, and we show how it can be used for location-based
access control. Then, we present the Echo protocol, a simple
method for secure location verification. The Echo protocol
is extremely lightweight: it does not require time synchro-
nization, cryptography, or very precise clocks. Hence, we
believe that it is well suited for use in small, cheap, mobile
devices.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection Ac-
cess controls; D.4.6 [Operating Systems]: Security and
Protection Authentication

General Terms
Security, Algorithms

Keywords
Secure Location Authentication, Secure Location Verifica-
tion, Sensor Networks

1. INTRODUCTION
Computer scientists are used to studying access control

mechanisms where one’s identity determines what one is au-
thorized to do. However, in the physical world, identity is
not the only thing that matters: often, the physical location
of the requester also plays an important role in determining
access rights. This suggests studying location-based access
control.

∗This work was supported in part by DARPA NEST con-
tract F33615-01-C-1895, NSF CCR-0113941, and an equip-
ment donation from Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSE’03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-769-9/03/0009 ...$5.00.

Location-based access control in the physical world is easy,
natural, and familiar. For example, being able to turn on or
off the lights in a particular room requires having a physical
presence in the room. The very design of the light switch
is what enforces the security policy. In contrast, achieving
the same kind of guarantee with information systems, such
as wireless networks, is less straightforward; it is not simply
a matter of putting a switch in the right place. To en-
force location-based access control policies on information
resources, we need a way to perform location verification,
where a principal’s location is securely verified to meet cer-
tain criteria: e.g., being inside a particular room or a specific
building.

Location verification enables location-based access con-
trol. Once a principal’s location has been verified using
a protocol for location verification, the principal can be
granted access to a particular resource according to the de-
sired policy. This approach is naturally combined with phys-
ical security; guards or locks might be used to determine who
is allowed to enter a building, then location verification em-
ployed to allow wireless access to all those inside. In this
way, the location verification problem is the key technical
challenge that must be surmounted to implement location-
based access control.

Location-based access control has several benefits. Most
importantly, it is natural for many applications. One sim-
ple policy might allow wireless control of only the lights for
the room you are in, or might insist that a company server
cease operating if it is taken outside the building. In ad-
dition, using location for access control obviates the need
to establish shared secrets in advance. Visitors to a build-
ing need not obtain wireless encryption keys prior to their
visit; instead, the keys could be granted automatically to
all physical occupants of the building. Likewise, at the ball-
park, fans at a baseball game could receive live scorecards
on their wireless devices, while stadium owners could restrict
this service to only those actually present in the stadium.
It would be quite cumbersome to distribute new keys to all
fans attending each game, but location-based access con-
trol allows bootstrapping off the existing physical security
measures controlling entry to the premises.

In this paper, we study the location verification problem.
First, we introduce and define the location verification prob-
lem in a careful way (Section 2). Then, we propose a new
protocol for location verification, called the Echo protocol
(Section 3), and we prove its security (Section 4). This work
provides a foundation for securely using location in wireless
information systems.

2. GOALS AND ASSUMPTIONS

2.1 Problem Statement
There are many natural variants of the secure location

problem. We focus on solving the in-region verification
problem: a set of verifiers V wish to verify whether a prover
p is in a region R of interest. R may be a room, a building,
a stadium, or other physical area. The region typically has
some sort of physical control to restrict people’s entry into
it; the purpose, then, is to control access to resources that
are not intrinsically constrained by physical security, such
as wireless networks. The verifier infrastructure V may, in
some cases, be a distributed system consisting of multiple
nodes.

The protocol must run correctly in the face of adversaries.
Thus, when p does not in fact have a physical presence inside
R, the verifier must be careful not to accept p’s claim to be in
R. Furthermore, if p does have a presence in R, the verifier
should accept p’s claim; otherwise the protocol would not
be useful in practice. We therefore require the following two
properties to ensure that the protocol is useful and secure:

• Completeness: If p and V both behave according to
the protocol, and p is in R, then V will accept that p
is in R.

• Security: If V behaves according to the protocol and
accepts p’s claim, then p, or a party colluding with p,
has a physical presence in R.

It is important to distinguish between the problem we
are addressing, the in-region verification problem, and the
secure location determination problem. In the latter prob-
lem, V attempts to securely discover the physical location
of p. In contrast, in the in-region verification problem, p
claims to be in a particular region, and V accepts or rejects
the claim. The prover’s location claim serves as a hint for
the verifier to confirm or disprove. Framing the problem
in terms of secure in-region verification, not secure location
determination, simplifies the problem and allows different
location determination algorithms to be used.

In fact, it is possible to compose an in-region verification
protocol with any location determination algorithm, even a
potentially insecure one, without compromising the security
of the ultimate guarantee that a prover is in the region. The
in-region verification algorithm verifies whether the claimed
location is in R or not; thus, p can use an insecure local-
ization algorithm to generate a claimed location that will
be securely tested for accuracy by V . At worst, p’s claim
will be rejected; in no case will V believe something about
p’s location that has not been securely checked. The prover
p thus has the flexibility to choose any appropriate loca-
tion determination algorithm, even if it has not been proven
secure. After running the determination algorithm, p will
know which claims it can plausibly make.

2.2 Assumptions
It is worth considering in more detail what our particular

protocol is and is not attempting to do. We list below some
of our assumptions:

• Regions, not points. We are not attempting to ver-
ify the exact location of the prover. In other words, the
locations claims we verify are not claims of particular
point locations (plus or minus some error distance),

but rather just presence in a particular region of inter-
est R. This model accords well with our anticipated
applications. We assume that, before the verification
protocol begins, both the prover and verifier know the
definition of the region R.

• Only “local” regions. It is not a requirement to
verify all location claims; and indeed, there are some
location claims we do not even attempt to verify. More
specifically, we only attempt to verify location claims
for regions R that are “near” V . We will explore more
precisely what this means in Sections 3 and 4. The
restriction makes sense in light of the proposed ap-
plication domains: if you have a network of devices
scattered through a building, you are typically not in-
terested in regions that are outside the building.

• RF and sound capability. The verifier and prover
must both be able to communicate using both radio
frequency (RF) and sound (typically ultrasound fre-
quencies). We will use both transmission media in our
protocol.

• Bounded processing delay. The prover must be
able to bound its processing delay. We will describe
the effects that a loose bound will have on the protocol
in Section 4.

2.3 Threat Model
In order to verify the security property, we must con-

sider the protocol with respect to a particular threat model.
We assume the verifier nodes are all trusted, and they can
communicate securely amongst themselves. In contrast, the
prover p might behave maliciously, and we will consider an
adversarial prover consisting of multiple colluding nodes, ar-
bitrary computing power, and secure RF (speed of light)
communication amongst its own nodes as well as sound gen-
eration and detection capability on each of its nodes.

Lastly, by definition, the adversary must not actually have
any presence in the region R. Otherwise, it would be able to
make a legitimate claim and would not need to attack the
protocol.

2.4 Design Principles
We designed our protocol according to the following de-

sign principles:

• Make few resource demands on the prover and
verifier. We would like to limit the computation power
and hardware resources necessary to participate in the
protocol to an absolute minimum. The real goal is to
enable location proofs for a large class of devices.

• No prearranged setup required. It should not be
necessary for the prover to have previously engaged
in a setup or registration step with the verifier. This
excludes many cryptographic solutions; even public-
key cryptography requires pre-arranged trust relation-
ships, and thus is not suitable for our purposes. By
eliminating the setup step, we are enabling access to
resources to be granted based on physical presence
alone.

In settings where keys have been previously set up, we
can use them to complement our protocol. We will
discuss a variant of the Echo protocol in Section 4.1

where a challenge-response protocol can be used to ver-
ify that a particular principal is inside a given region.

• Quantitative guarantees. We would like to provide
precise bounds on the uncertainty in the protocol.

2.5 Design Setting
We initiated this work primarily in the context of nodes

such as those found in sensor networks. This choice imposes
certain design constraints. Briefly, sensor networks are com-
posed of many small, cheap nodes equipped with a variety
of environmental sensors. Examples include accelerometers,
microphones, and thermometers. The nodes contain a gen-
eral purpose CPU, though it is often useful only for mini-
mal computation. Finally, the nodes communicate using a
wireless network over distances of tens to hundreds of me-
ters. Thus, the sensing capabilities of sensor networks can
be used to help bridge the physical-computational gap.

One consequence of considering this domain is that many
techniques, such as public-key cryptography, are infeasible.
The Berkeley Mica sensor nodes, for example, have 4MHz 8-
bit processors with 4KB of RAM [11]. What we need, then,
is a lightweight way to perform location verification given
many sensor-class nodes. The principal trying to prove its
location need not be a sensor-class node, though we do not
assume that it is more powerful. The fact that our protocol
can work within these tight constraints makes our results
are all the more meaningful, and we expect that the Echo
protocol will be broadly applicable to sensor networks, net-
worked embedded systems, ubiquitous computing, wireless
networks, and many other similar application settings.

2.6 Our Contributions
We introduce the secure in-region verification problem.

We argue that, for security purposes, the in-region verifi-
cation problem is a better model to focus on than trying
to solve the secure location determination problem directly.
This is a novel view of localization.

Second, we present a provably secure protocol for perform-
ing in-region verification with minimal hardware require-
ments.

While our protocols use ultrasound and time-of-flight tech-
niques, neither of these ideas are new: others have previously
proposed localization algorithms based on time-of-flight and
on ultrasound ranging. Rather, the novel contribution of
this paper is to provide a solution to the security problem
in localization.

3. OUR DESIGN: THE ECHO PROTOCOL
Next, we describe the design of our proposal for location

verification, which we dub the Echo protocol. For expository
purposes, we start by considering a simplified toy scenario
and developing a simple protocol for this scenario (Section
3.1); then, we extend it repeatedly (Section 3.2) until we
obtain the full protocol (Section 3.3).

Notation.. We define s to be the speed of sound, or 331 m/s.
Likewise, we will take c to be the speed of light, or 3 × 108

m/s. Define d(x, y) to be the distance between x and y.
We define R to be the area in which we would like to verify
the location of a prover p. The set of all verifier nodes is
denoted by V . N denotes a nonce, i.e., an unpredictable
random value.

Figure 1: An illustration of our first simplification
of the problem. The prover (not shown here) will
try to convince the single verifier node v that it is
inside the region R (depicted as a shadowed circle,
which in this first scenario is assumed to be centered
at v).

1. p
radio
−−−→ v : `

2. v
radio
−−−→ p : N

3. p
sound
−−−−→ v : N

v accepts iff ` ∈ R and
elapsed time ≤ d(v, `) · (c−1 + s−1).

Figure 2: A protocol that solves our first simplifica-
tion of the problem.

3.1 Protocol Intuition
Consider first a simplified case, where we have only a sin-

gle verifier node v, where the region R is a circle1, and where
this circle is centered at v. This scenario is shown pictorially
in Figure 1. Now, suppose that the prover claims to be at
some location ` ∈ R inside the region.

We present a simple protocol for validating the location
claim in this restricted case. First note that if the claimed
location ` is not inside R, then the verifier can reject the
claim immediately. Thus, we may safely assume that the
prover claims to be inside R. The protocol begins when
the verifier node v sends a packet containing a nonce to the
prover using RF; the prover immediately echoes the packet
back to the verifier using ultrasound. The verifier node v
can then calculate how long it should take to hear the echo,
namely, the sum of the time it takes to reach ` using RF, plus
the time it takes for a return packet to go from ` to v using
ultrasound. Thus, the total elapsed time for the prover to
hear the echoed nonce should be about d(v, `)/c + d(v, `)/s
seconds. The only thing v has to do is time this process: If
the elapsed time from the initial transmission to reception of
the echo packet is more than this amount, the verifier node
v rejects the prover’s claim; otherwise, if the elapsed time is
at most this expected amount, v accepts. This protocol is
summarized in Figure 2.

Why does this work? If the prover is able to return the
packet in sufficient time, then the verifier is assured that
the prover is within d(v, `) meters of v. This means that `
is known to be inside a circle of radius d(v, `) centered at v.
Call this circle C; then we know ` ∈ C. Since R is defined
to be a circle of radius at least d(v, `) centered at v, we have

1In practice, the region is a sphere, instead of circle. How-
ever, for simplicity, our discussion will be phrased in terms
of circles in the plane. This simplification will make the pro-
tocol easier to understand and does not affect the validity
of our results.

Figure 3: Diagram illustrating a single verifier at the
center of a circular region R where there is an upper
bound of ∆ on the processing delay. The diagram
illustrates the relationship between ROA(v, ∆) and
ROA(v, 0), which is equal to R in this case.

C ⊆ R, and hence ` ∈ R. In short, we know that the prover
must be inside R.

If the prover cannot return the nonce in sufficient time,
it may be for one of two reasons. Either the prover is more
than d(v, `) meters away from v, or the prover has some pro-
cessing delay between receiving the RF packet and returning
the ultrasound packet. We will explore this latter issue in
the following section.

What if the prover tries to cheat by delaying his response?
This attack only increases the total elapsed time of the pro-
cess, thereby making the verifier reject. Intuitively, the
longer it takes to complete the protocol, the farther away
the prover appears to be. It is not in the prover’s inter-
est to appear to be farther from v, because this will put
the prover’s apparent location outside of R, hence making v
reject the prover’s claim.

Can the prover cheat by starting the transmission of the
response early? No, this attack is not possible. The nonce in
the packet prevents the prover from sending a reply before
it has received the outgoing RF packet. Hence, the speed of
light and sound prevents the prover from pretending to be
closer to v than he really is.

3.2 Processing Delay & Nonuniform Regions
In this section, we present a slightly more advanced proto-

col that addresses three additional issues: the fact that the
prover has a non-zero processing delay, the fact that packets
take nonzero time to transmit, and the fact that R might
not be a circle. We base this protocol on the simple protocol
presented in the previous section.

Processing delay.. Let us first address the prover’s packet
processing delay. We will start with the configuration men-
tioned in Section 3.1: We have a single verifier located at the
center of a circular region R. In the ideal case, the prover
can receive the RF packet from the verifier node and send
out the response over ultrasound instantly; in practice, this
is not possible, as the prover will require some time to pro-
cess the incoming packet. Suppose the prover can bound its
processing delay to be at most ∆p seconds and can make
the verifier node aware of this maximum delay. Then, if the
prover claims to be at `, the verifier node can compute the
time for a prover actually at ` to get the packet back: the
time for the RF signal to travel from v to `, a processing
delay of at most ∆p, and finally the time for the sound to
travel from ` back to v.

Now we have a problem: A malicious prover could submit
a location claim ` at the border of R and grossly overstate
its true processing delay to be some very large ∆m. If, how-
ever, the prover’s true processing delay were zero, then it
could fool the verifier node into thinking that it was inside
R when in fact it wasn’t. Since the verifier allows up to ∆m

processing delay while the adversary has no delay, the ad-
versary could be ∆m · (c

−1 +s−1)−1 ≈ ∆m ·s meters outside
of R and the verifier would still accept the claimed location,
violating our security condition.

The solution to such a problem is for the verifier node
to shrink the allowable region in which location claims are
accepted. If the prover claims a maximum processing delay
of 0, then the protocol presented earlier in Section 3.1 is
sufficient. If, however, the prover claims a processing delay
of ∆p > 0, the verifier should not engage in the protocol if
the claimed location ` is within ∆p · s of the outside border.
Thus, we define the term Region of Acceptance (ROA) to
be the area in which the verifier node v is sure that it can
correctly verify claims for a prover. Note that this region
depends on ∆p. We write ROA(v, ∆p) to indicate the region
where location claims are permitted by v, if the claimed
processing delay is ∆p. See Figure 3 for an illustration.

As stated above, ROA(v, ∆p) is a circle centered at v and
fully contained within R. Its radius is ∆p · s less than R’s
radius (since R was assumed to be a circle). Amending our
prior protocol, the verifier should engage in the protocol only
if the location claim ` is within ROA(v, ∆p). For ∆p = 0, we
have ROA(v, 0) = R, and so the simple protocol presented
earlier is a special case of the amended protocol.

We note at this point that if the prover has a processing
delay of ∆p, the protocol is not complete. Recall that the
completeness condition from Section 2.1 requires that the
verifier always accept if the prover is inside R and behaving
properly. Yet, for a processing delay of ∆p, our verifier
will not accept location claims that are in the annulus R \
ROA(v, ∆P), so our protocol cannot be fully complete.

This suggests an alternate way to view ROA(v, ∆p): it
is the region for which the protocol is complete. In other
words, ROA(v, ∆p) is the region where a verifier will accept
location claims from a correctly functioning prover with pro-
cessing delay less than ∆p. We will define the coverage of
the ROA as the ratio between the area of the ROA and the
area of R. A coverage of 100% indicates that the protocol is
complete; a coverage of less than 100% indicates only partial
completeness.

Packet transmission time. There is another source of un-
certainty: the time it takes to actually transmit packets.
Each link, radio and ultrasound, has some finite transmis-
sion bandwidth. If we are not careful about when we start
and stop timing, an attacker could exploit the transmission
time to launch an attack. The key is that if the bandwidths
in each direction are not the same, the attacker could simply
guess the first (or last) few bits of the nonce and send them
preemptively.

The attacks in question depend on how timing is per-
formed. We can start timing either before the first bit or
after the last bit of the outgoing nonce from the verifier
to the prover, and likewise stop timing before the first bit
or after the last bit of the incoming nonce. We shall show
that in a given situation only some choices are secure; which
choices those are depends on the bitrates of the radio and

Figure 4: A single verifier v, inside a irregular re-
gion R. We are interested in proving that the prover
is within R. The larger circle represents ROA(v, 0),
the area in which v is useful for location verification
proofs. This is the largest circle centered at v and
wholly contained within R. The inner circle repre-
sents ROA(v, ∆), the region in which v will accept
location claims from a device that is able to bound
its processing delay by ∆.

ultrasound links. An important note is that the bitrate, i.e.,
the bandwidth, of each link is distinct from the propagation
speed of waves in the relevant medium, which determines the
latency of the link. Even though radio waves travel orders
of magnitude faster than ultrasound waves, in practice the
bitrates of each may often be comparable. For the sake of
the following discussion, let us call the outgoing bandwidth
bo and the incoming bandwidth bi.

Suppose the verifier stops its timer upon receiving the first
bit of the nonce, and suppose bo > bi. Then the attacker
could start sending a few randomly guessed bits of the nonce
slightly before actually receiving it. The verifier would then
infer the prover to be closer than it actually is. Although the
attack approach would only work probabilistically, it would
only take a few tries to succeed on a few bits. Therefore if
bo > bi, the verifier must stop its timer only after receiving
the last bit of the nonce.

Analogously, if the verifier starts timing after the entire
nonce has been sent and bi > bo, then the attacker could
guess and then send the last few bits without having received
them.

To be safe from such attacks, then, the verifier should start
timing before sending the first bit of the nonce, and stop
timing after receiving the entire nonce. Unfortunately, this
increases the overall uncertainty, so that ∆p ≥

n
bo

+ n
bi

where

p is any prover and n is the nonce length. If we know in a
particular deployment that one or the other bandwidth is
higher we need not be conservative on both ends, since they
are mutually exclusive. We assume that the prover takes this
contribution to the delay into account when calculating ∆p;
the constraint will be checked by the verifier, so the prover
needs to add this lower bound to any processing time.

Non-circular regions.. Up until now, we have been as-
suming that R is a circle centered at v. However, that is not
always a realistic assumption: perhaps we are interested in
verifying location claims in a square room, for instance. We
will now relax that assumption and assume that the verifier
node is contained somewhere within an arbitrarily shaped

region R. This causes a larger area to be incomplete, or
non-verifiable, as shown in Figure 4. We will address in-
completeness in the next section with our final iteration of
the protocol.

Previously, ROA(v, 0) had been equivalent to R. But this
will not work when R is not a circle centered at v. Since we
are assuming that our communications equipment is omni-
directional and that signals travel at the same speed in all
directions, the ROA must be a circle. Furthermore, the ROA
must be wholly contained within R. By definition, the ROA
is the region where the verifier will accept a correctly func-
tioning prover; if the ROA were not fully contained within
R, the prover could accept a location claim for a prover out-
side of R, which would be unacceptable. Furthermore, we
would like to maximize the area of the ROA since a larger
ROA leads to a larger coverage. Thus, ROA(v, 0) should be
the largest circle that fits within R; in other words, it should
be the largest circle that is tangent to R and still contained
within it.

We now extend the protocol to handle non-circular regions
R where the verifier can bound its processing delay to be at
most ∆p. Recall that both the prover node and verifier node
know R a priori. Using this, the verifier node can compute
ahead of time the region ROA(v, 0).

The protocol then proceeds as follows: the prover first
broadcasts its claimed location ` and processing delay ∆p

to the verifier. If ` 6∈ ROA(v, ∆p), the verifier should im-
mediately reject the location claim since it will not be able
to definitively validate the claim. Otherwise, the verifier
node broadcasts a nonce to the prover; the prover echoes
the nonce back over ultrasound. The verifier can again time
the communication: if it is no greater than the time for the
signal to travel out and back and allowing for processing
delay, the verifier accepts the location claim.

3.3 Full Protocol Description: The Echo Pro-
tocol

In the final iteration of the protocol, we introduce multiple
verifier nodes in an attempt to increase the coverage of R.
Recall that if R is not a circle, no single node can provide
100% coverage. Consequently, multiple verifiers are needed.
Intuitively, we will run the protocol presented in Section 3.2
after selecting one verifier from among the set of verifiers V .

The protocol is quite simple. See Figure 6 for the com-
plete definition. First, a verifier is chosen so that the claimed
location ` lies within that verifier’s ROA. If no such verifier
exists, execution is aborted, since the claim can not be ver-
ified. After choosing a verifier v to participate, v sends a
packet to p using RF, which is echoed back to it using ultra-
sound. v can calculate how long it should take to hear the
echo, namely, the sum of the time it takes to reach ` using
RF, plus ∆p, plus the time it takes for a return packet to go
from ` to v using ultrasound. If the measured elapsed time
exceeds this anticipated time, v rejects the location claim.
The nonce in the packet prevents the prover from sending a
reply before it has received the outgoing RF packet.

The extra verifier nodes serve to expand the region of
acceptance within R. Thus, while ROA(v, ∆p) refers to the
region that one particular verifier node can accept, we define
ROA(∆p) to be the region where at least one verifier node
can prove location claims. It is then clear that

ROA(∆p) ≡
�

v∈V

ROA(v, ∆p)

Figure 5: The relationship between ROA(v) (for a
single verifier v) and the aggregate ROA. Each gray
circle represents ROA(v, ∆) for a particular verifier
v. Taken collectively, the gray region represents
ROA(∆), the aggregate region in which the set of ver-
ifiers can successfully verify the location of a prover
that features a processing delay less than ∆. Note
that ROA(∆) is wholly contained within R.

Communication Phase:

1. p
radio
−−−→ broadcast : (`, ∆p).

The prover broadcasts its claimed location `
and processing delay ∆p.

2. ts ← time ().

v
radio
−−−→ p : N .

A single verifier v starts its timer and responds
with a random nonce
We require ` ∈ ROA(v, ∆p) and ∆p ≥

n
bo

+ n
bi

.

If no such verifier exists or ∆p is invalid, abort.

3. p
sound
−−−−→ v : N .

tf ← time ().
The prover echoes the nonce over ultrasound.
The verifier records the finish time.

Verifier Computation Phase:

4. if sent nonce differs from received nonce
return false

5. if tf − ts > d(v,`)
c

+ d(v,`)
s

+ ∆p

return false
6. Otherwise, return true

Figure 6: Formal description of the Echo protocol,
which can perform location verification in an arbi-
trary region R with multiple verifier nodes. We rep-
resent the prover node as p and the verifier node
that runs the protocol as v.

since the set of verifiers can accept a location proof if the
claimed location is inside at least one verifier’s region of
acceptance.

In the Echo protocol, the infrastructure chooses a single
verifier node to participate in the protocol. A verifier v may
participate if ` ∈ ROA(v, ∆p), since by definition that is the
region that it can perform secure location verification proofs.
Note that the claimed location ` may be inside ROA(v, ∆p)
for many different verifier nodes v, hence more than one ver-
ifier node might be eligible for participation in the protocol.
We only require one to be chosen, and we allow the ver-
ifiers to use any convenient leader election mechanism for
choosing which particular verifier node will run the proto-
col. They may have a purely deterministic mechanism for
electing verifiers, or they may use a dynamic algorithm in
an attempt to conserve power, for example.

4. ANALYSIS

4.1 Security Analysis
As explained in Section 3, the Echo protocol relies on tim-

ing: the amount of time it takes to get a response from the
prover bounds how far the prover can be from the verifier.
We will now show that it is impossible for an adversary out-
side R to convince the verifier that it is in R.

Proof of security.. The heart of the argument is that an
attacker would not be able to get the sound signal to the
verifier in time. In order to confirm that the prover is at
`, all a particular verifier node v must do is verify that the
incoming sound signal, which includes the outgoing nonce,
is received within

tmax ≤
d(v, `)

c
+

d(v, `)

s
+ ∆p seconds,

where d(v, `) is the distance from the verifier to the claimed
location, c is the speed of radio propagation (approximately
the speed of light), s is the speed of sound, and ∆p is the
prover’s processing delay. As described in Section 3.2, ∆p

includes the packet transmission time. This is checked by
the verifier in step two of the communication phase of the
protocol. Recall that v agrees to run the protocol only if
` ∈ ROA(v, ∆p), i.e., if the circle of radius d(v, `)+∆p ·s lies
wholly within R. By definition, the attacker A is outside R;
thus we have

d(v,A) > d(v, `) + ∆p · s.

Let tAfinish denote the time at which the attacker finishes
sending its response (message 3 of the Echo protocol). The
attacker has only two choices: either guess at least some of
the bits of N , or learn the entire nonce N from v. In the
former case, the attacker’s success probability can be made
negligibly small by choosing N from a set of sufficient size.
In the latter case, it will take at least d(v, A)/c seconds after
v first reveals N before A can receive N , because no signal
can travel faster than the speed of light. Because v reveals
N for the first time in message 2 of the protocol, tAfinish ≥
d(v, A)/c in this case. Now, since the attacker cannot finish
transmitting its response before it has received the entire
nonce, and because the attacker’s response cannot travel
faster than the speed of sound, the minimum time required

for the attacker to hear N and get a response to v is

tAmin = tAfinish +
d(v, A)

s

≥
d(v, A)

c
+

d(v, A)

s

>
d(v, `) + ∆p · s

c
+

d(v, `) + ∆p · s

s

≥
d(v, `)

c
+

d(v, `)

s
+

∆p · s

c
+

∆p · s

s

≥
d(v, `)

c
+

d(v, `)

s
+ ∆p.

Consequently, the attacker’s signal cannot reach the veri-
fier before the deadline. Note that nowhere in our analysis
did we rely on which verifier node was used. The only dif-
ference would be in the magnitude of the error terms and,
therefore, in the chance that the location claim would even
be accepted for verification. The attacker does not gain
any advantage by selecting a different verifier from the one
elected to participate.

Attacks. One possible attack could exploit the difference
in propagation speed of sound in different media. If the
verifier’s estimation of s is slower than the actual one, then
the proof above does not apply. If this is a valid threat
model—say there is a lot of metal near the verification region
that is capable of transmitting sound from the outside—then
the verifier’s estimation of s should be adjusted. This can
be done once on a site-specific basis. An alternate defense
would be to have other verifier nodes confirm the estimate
of s based on when the sound signals are received.

More generally, we require that there be no way for an
attacker to generate sound waves from afar without being
subject to speed-of-sound delays. For instance, if a remote
attacker could call up some person in R over the telephone,
convince the victim to put the call on speakerphone, inter-
cept message 2 from afar using a large antenna, and transmit
the appropriate ultrasonic signal (i.e., message 3) over the
telephone with sufficiently high fidelity, then the attacker
might be spoof his location. The key is that the attacker
has evaded the speed-of-sound limit on signal propagation
by exploiting the ability to remotely actuate a loudspeaker
located inside R. We expect such “remote actuation” at-
tacks will be very difficult to mount in practice, for several
reasons. Nonetheless, this example illustrates a crucial secu-
rity assumption: we assume that low-delay remote actuation
of sonic signals is infeasible.

Variants We Rejected. One might also consider the impli-
cations of other variants of the protocol, where the use of
sound and radio for the outgoing and incoming signals is
changed from (radio, sound) to (radio, radio), (sound, ra-
dio), or (sound, sound). If radio communication is used in
both directions, then the error term ∆·c would be very large
(105 to 106 times as large as the sound case), and it is quite
likely that the verifier would not accept location claims at
all, since the error might exceed the size of R itself! Thus,
at least one of the two directions should use sound.

Why did we reject (sound, radio)? There is a subtle at-
tack. If sound is used in the outgoing direction, an attacker
might be able to break security by using laser-based remote
“bugging.” The trick is to bounce a laser off a window within

Communication Phase:

1. p
radio
−−−→ broadcast : (`, ∆p).

The prover broadcasts its claimed location `
and processing delay ∆p.

2. ts ← time ().

v
radio
−−−→ p : N .

A single verifier v starts its timer and responds
with a random challenge.
We require ` ∈ ROA(v,∆p) and ∆p ≥

n
bo

+ n
bi

.

If no such verifier exists or ∆p is invalid, abort.

3. p
sound
−−−−→ v : Fk(N).

tf ← time ().
The prover answers the challenge with a response
over ultrasound.
The verifier records the finish time.

Verifier Computation Phase:

4. if Fk(N) differs from received response
return false

5. if tf − ts > d(v,`)
c

+ d(v,`)
s

+ ∆p

return false
6. Otherwise, return true

Figure 7: A variant of the Echo protocol. It authen-
ticates that some principal possessing the key k is in
the region R.

R and analyze the return signal to detect the vibration of
the window, which would allow a sophisticated attacker out-
side R to “bug” a room within R from miles away without
being subject to speed-of-sound delays on the propagation
of the sonic signal. Thus, “remote bugging” attacks effec-
tively speed up the transmission speed of the sound wave
and thereby invalidate our security proof above.

The (radio, sound) protocol is more secure against such at-
tacks, because “remote actuation” seems significantly more
difficult than “remote bugging,” and the security of the (ra-
dio, sound) bugging rests only on the difficulty of “remote
actuation” and not on the hardness of “remote bugging.”
For this reason, the Echo protocol uses radio in the outgo-
ing direction and reserves ultrasound for the return signal
from the prover.

Variant: The Keyed Echo Protocol. Up until now, we
have assumed that are no pre-shared keys that can be used
to verify location claims. If, however, there has been a key
previously exchanged between the prover and the verifier,
the verifier can verify that a particular prover is inside a
region. This can be used to restrict resources to a principal
who is also inside a particular room, for example.

The protocol, formally described in Figure 7, is very sim-
ilar to the Echo protocol. The prover uses a challenge-
response mechanism instead of merely echoing the nonce.
More formally, the verifier still sends out a nonce N as be-
fore; the prover, however, responds with Fk(N). We require
F to be a pseudorandom function, such as AES or SHA1-
HMAC. Here k is a key shared between both endpoints and
used solely for this purpose. In this way, the verifier is as-
sured that the challenge can only be correctly answered by
the principal with the key k. The rest of the protocol re-
mains the same.

4.2 Coverage
The Echo protocol requires that all the verifiers must be

inside the region of interest, R. Furthermore, the region
of acceptance is a subset of the region of interest and is
determined by the placement of the verifiers within R. Thus,
a natural question to ask is how well the verifiers “cover” a
given region R. We define coverage to be the fraction of the
region in which successful location claims can be validated.
Obviously, the ideal scenario would allow full coverage with
only a few verifiers. In that case, the verifiers would be
complete, according to our definition in Section 2.1. Recall
that the completeness condition requires that the verifiers
accept if the prover has a presence inside R. When the
coverage is less than 100%, completeness is only partial.

To measure this effect, we ran simulations to measure the
coverage in two scenarios with only a few nodes. In Fig-
ure 8(a), we placed 10 nodes in a 100m by 100m room.
The nodes were randomly placed with the constraint that
each node had to be 20m away from every other node; the
approach is called “constrained random” since it allows im-
precise deployment based on a rough model of the area. In
the pictured trial, the placement achieved 81% coverage; av-
eraging 5 trials yielded a mean coverage of 78%.

By manually placing 5 nodes, we were able to achieve a
coverage of 93% in a similar room (see Figure 8(b)). Thus,
with very few verifier nodes, the ROA covers a significant
fraction of the region that we are interested in. The regions
with the least amount of coverage are as expected: at the
edges and corners of the region.

Although there are a number of possible policies that
might be employed to get good coverage, we feel that using
a simple model of the site along with the “constrained ran-
dom” approach will yield good results with little effort. Of
course, coverage can always be further increased by adding
more verifier nodes.

4.3 Evaluation
The Echo protocol is explicitly designed to make few de-

mands on the prover and verifier.
First, we do not use cryptography. By avoiding the use of

both public- and private-key cryptography, we achieve two
goals. We lower the CPU and memory requirements on both
the prover and verifier, and perhaps more significantly, we
remove the need for any prior agreement between the prover
and verifier with respect to keys or certificates. This means
that if R is, say, a baseball stadium, then any fan attending
the game with a suitable small device can act as a prover.

Several authors have proposed schemes that rely on time-
of-flight measurements of radio signals. However, such ap-
proaches require processing speeds fast enough that distance
errors are small even with speed-of-light communication. In
contrast, error in our scheme is correlated to the speed of
sound, which is roughly 106 times slower than radio com-
munications. That means that a correspondingly greater
processing delay can be tolerated, which is crucial, if low-
cost devices are to participate.

Lastly, our protocol does not require time synchronization
between any two nodes. It only requires that each node have
a clock that can measure real time with some precision. For
example, taking the speed of sound to be 331 m/s, each 1ms
of timing inaccuracy in the receiver would increase uncer-
tainty by about 1/3 of a meter. If the prover and verifier
are 50m apart, the protocol runtime is about 150ms; clock

skew is unlikely to be more than a few microseconds during
this interval [8], so the uncertainty added would be on the
order of millimeters, which is acceptable for our application
domain.

5. RELATED WORK
A number of authors have proposed using time-of-flight

measurements and the speed of light to securely gain lo-
cation information about untrusted parties. Brands and
Chaum proposed a time-bounded challenge-response proto-
col [4] as a defense against man-in-the-middle attacks on
cryptographic identification schemes. Hu, et al., proposed
using temporal packet leashes for wireless networks to de-
fend against similar attacks [12]. However, a major limita-
tion of these schemes is that both the prover and verifier send
RF signals, requiring a much more accurate timing system
at the verifier as well as tight real-time processing guaran-
tees on both the prover and verifier for accurate readings.
For these reasons, we believe our algorithm is better suited
to mobile devices than those previous proposals.

In independent and concurrent work, Waters and Felten
present a scheme that uses round-trip time-of-flight of RF
signals to achieve goals similar to ours [19]. Their architec-
ture is similar to ours, in that they, too, suggest focusing on
secure location verification rather than on secure location
determination. However, their reliance on RF seems likely
to limit deployment, like the previous proposals mentioned
above. Additionally, by using tamper-resistant trusted de-
vices, they are able to defend against stronger adversaries.
If their verifier accepts, they can successfully show that the
trusted device is at the specified location. In comparison,
we can show that the device or a collaborator has a presence
at the specified location.

The idea of using time-of-flight to estimate distance is
not a new one: it dates back to the birth of radar systems,
which often use time-difference-of-arrival (TDOA) to deter-
mine the range to detected objects. Ultrasonic time-of-flight
ranging can even be found in nature, where it is used by bats.

Coarse-grained location authentication has been used in
the television industry to prevent cloning of set-top boxes [9].
Gabber and Wool propose four coarse-grained techniques,
relying on extensive telecommunications infrastructure such
as satellites, paging and cellular networks. Their techniques
rely on tamper-resistant hardware.

Location-limited channels provide a communication mech-
anism that is restricted to a short range and provides both
endpoints a mechanism to guarantee the authenticity of each
participant [16]. Balfanz, et al., have proposed using location-
limited channels for location-based access control [3], and
many others have also proposed use of limited-range radio
broadcasts as a way to verify proximity [13, 6, 5]. However,
there are no strong security guarantees that the communi-
cation range will always be limited as desired: an adversary
with more powerful equipment may be able to participate
in the protocols even if they are substantially further away
than non-malicious parties.

Finally, there are many techniques to help localize devices
[2, 14, 15, 10, 18, 1], GPS being one of the most widely
deployed. However, none of those works addressed secu-
rity, and in fact, GPS signals can be spoofed [17, §3.2.2].
Nonetheless, we have noted that combining a (possibly inse-
cure) localization mechanism with our secure location ver-
ification technique yields a secure localization algorithm.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x axis: 100 meters

y
ax

is
: 1

00
 m

et
er

s

(a) 10 randomly placed nodes; the nodes
were constrained so that they were at least
20m away from all other nodes. This “con-
strained random” method corresponds to a
reasonable, but not precise, dispersement of
nodes. These 10 verifiers covered 81.5% of
the room.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

x axis: 100 meters

y
ax

is
: 1

00
 m

et
er

s

(b) 5 nodes manually placed to maximize
coverage (93.3%)

Figure 8: Simulation results showing the effective ROA coverage area that a few verifier nodes can achieve
in a 100m by 100m square room. The simulations show that the Echo protocol is quite effective, even with
only a small number of verifier nodes.

Thus, insecure localization protocols should be seen as com-
plementary to our work on secure location verification.

Many authors have commented on the value of location-
based access control [7, 5, 3, 13, 6].

6. FUTURE WORK
One area for future work is performing more precise region

verification using intersection (e.g., triangulation or trilater-
ation). The idea is that if verifier v1 can verify ROA(v1, ∆)
and v2 can verify ROA(v2, ∆), then together they should be
able to verify ROA(v1, ∆) ∩ ROA(v2, ∆). The intuition is
simple: if a prover is verified to be present in both regions,
then it must be in their intersection. The allure of this ap-
proach is considerable: under our current scheme, a verifier
node is required inside R, whereas in an intersection-based
scheme, in principle nodes at the edges of, or even outside,
R might suffice.

There are significant challenges to be surmounted before
such an approach can be made compatible with security,
though. First, the verifications would have to be done si-
multaneously; if not, the prover could move from location
to another between the two runs. One way to do this is to
have the prover receive both nonces and return a hash of
their concatenation to both verifiers, who would have ex-
changed nonce information in advance. Another problem
is that intersection-based protocols are not robust against
collusion attacks by attackers with multiple nodes: such an
adversary may legitimately have one node in ROA(v1, ∆)
and one node in ROA(v2, ∆) independently without having
any presence in ROA(v1, ∆)∩ROA(v2, ∆). It seems there re-

mains considerable work to be done before intersection can
be applied in a full protocol.

7. CONCLUSION
We introduced the in-region verification problem. Then,

we designed a provably secure, lightweight protocol to ad-
dress it, named the Echo protocol. The Echo protocol does
not require cryptography, time synchronization, or any prior
agreement between the prover and verifier, making it suit-
able for low-cost devices such as those in sensor networks.
It is robust against a malicious adversary with unbounded
computing power; the security rests on physical properties
of sound and RF signal propagation. We showed that for
a reasonable scenario, coverage of 80–90% could be easily
achieved, i.e., the Echo protocol could guarantee in-region
verification for 80–90% of legitimate location claims. Con-
sequently, we expect the Echo protocol to be a useful contri-
bution in contexts where physical presence is used for access
control.

8. REFERENCES
[1] GPS Documentation. https://www.peterson.af.

mil/GPS_Support/gps_documentation.htm.

[2] Paramvir Bahl and Venkata N. Padmanabhan.
RADAR: An In-Building RF-Based User Location and
Tracking System. In INFOCOM (2), pages 775–784,
2000.

[3] Dirk Balfanz, D.K. Smetters, Paul Stewart, and
H. Chi Wong. Talking to Strangers: Authentication in

Ad-Hoc Wireless Networks. In Network and
Distributed System Security Symposium Conference
Proceedings, 2002.

[4] Stefan Brands and David Chaum. Distance-Bounding
Protocols. In EUROCRYPT ’93, volume 765 of LNCS.

[5] Deborah Caswell and Philippe Debaty. Creating Web
Representations for Places. In 2nd International
Symposium on Handheld and Ubiquitous Computing,
pages 114–126, 2000.

[6] Mark D. Corner and Brian D. Noble. Zero-Interaction
Authentication. In MOBICOM ’02. ACM Press, 2002.

[7] Dorothy E. Denning and Peter F. MacDoran.
Location-Based Authentication: Grounding
Cyberspace for Better Security. In Computer Fraud &
Security. Elsevier Science Ltd., February 1996.

[8] Jeremy Elson, Lewis Girod, and Deborah Estrin.
Fine-Grained Network Time Synchronization using
Reference Broadcasts. In Proceedings of the Fifth
Symposium on Operating Systems Design and
Implementation (OSDI 2002), 2002.

[9] Eran Gabber and Avishai Wool. How to Prove Where
You Are: Tracking the Location of Customer
Equipment. In Proceedings of the 5th ACM conference
on Computer and Communications Security, pages
142–149, 1998.

[10] Lewis Girod, Vladimir Bychkovskiy, Jeremy Elson,
and Deborah Estrin. Locating Tiny Sensors in Time
and Space: A Case Study. In ICCD, 2002.

[11] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar,
David Culler, and Kristofer Pister. System
architecture directions for network sensors. In
ASPLOS, 2002.

[12] Yih-Chun Hu, Adrian Perrig, and David B. Johnson.
Packet Leashes: A Defense against Wormhole Attacks
in Wireless Ad Hoc Networks. In INFOCOM, 2003.

[13] Tim Kindberg, Kan Zhang, and Narendar Shankar.
Context Authentication Using Constrained Channels.
In Fourth IEEE Workshop on Mobile Computing
Systems and Applications, 2002.

[14] A.M. Ladd, K.E. Bekris, G. Marceau, A. Rudys, D.S.
Wallach, and L.E. Kavraki. Robotics-Based Location
Sensing for Wireless Ethernet. In Eigth Annual
International Conference on Mobile Computing and
Networks (MobiCOM 2002), 2002.

[15] Nissanka B. Priyantha, Allen K. L. Miu, Hari
Balakrishnan, and Seth J. Teller. The cricket compass
for context-aware mobile applications. In Mobile
Computing and Networking, pages 1–14, 2001.

[16] Frank Stajano and Ross Anderson. The Resurrecting
Duckling: Security Issues for Ad-Hoc Wireless
Networks. In 7th Security Protocols Workshop, volume
1796 of Lecture Notes in Computer Science, pages
172–92, 1999.

[17] John A. Volpe. Vulnerability Assessment of the
Transportation Infrastructure Relying on the Global
Positioning System, August 2001.

[18] A. Ward, A. Jones, and A. Hopper. A New Location
Technique for the Active Office. IEEE Personal
Communications, 4(5):42–47, October 1997.

[19] Brent Waters and Ed Felten. Proving the Location of
Tamper Resistent Devices.

http://www.cs.princeton.edu/~bwaters/research/

location_proving.ps.

