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Abstract

In this paper the structure of the NSA-designed block cipher Skipjack is examined. By crypt-
analysing a large number of variants of the algorithm, we give plausible arguments for several
principles behind the Skipjack design. The conclusion is that the algorithm seems to be carefully
designed. ? 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Skipjack is a 64-bit block cipher that is used in the Clipper Chip [7,14]. The de-
sign principles of Skipjack have not been published and the algorithm itself was only
recently made public by the NSA [12,13].
Skipjack is a remarkably simple cipher, and one interesting feature is the use of two

di<erent types of rounds. These are referred to as A, and B-rounds and encryption with
Skipjack consists of =rst applying 8 A-rounds, then 8 B-rounds, once again 8 A-rounds
and =nally 8 B-rounds. Earlier papers have demonstrated that the number of rounds
was apparently not chosen with a large margin of security [2,3,10], but they did not
focus on the high-level structure of Skipjack.
In this paper we examine the structure of Skipjack, focusing especially on under-

standing the rationale behind the design choices embodied in the cipher. A central
motivation is the observation that Skipjack is just one representative from a very large
design space of related ciphers, and in particular there are many parameters which
could easily be changed to get a di<erent construction with presumably di<erent prop-
erties. Consequently, it is natural to wonder whether the designers of Skipjack missed
any opportunities to improve the cipher by selecting one of the other alternatives in
this design space.
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In an attempt to shed light on these issues, we propose the following working hy-
pothesis: Skipjack appears to be essentially the only strong cipher in a very large
family of weaker constructions. We provide a large body of evidence for this con-
jecture by showing that many other natural choices of the design parameters lead to
apparently weaker cryptosystems. 1

There are several natural ways to vary the design of Skipjack without a<ecting its
basic ‘look and feel’ too much:
1. We can vary the relationship between Skipjack’s two round-types.
2. We can vary the ordering of the two types of rounds used in Skipjack.
Each of these design elements allows for many plausible choices of parameters, and

each design element can be varied independently. In this way, we get a large space of
Skipjack-variants. In each case, we show that changing the de=nition of Skipjack can
lead to certi=cational weaknesses not present in the real Skipjack. This suggests that
any simple change to Skipjack risks introducing new vulnerabilities, and in particular
that Skipjack may have been carefully chosen as the optimal candidate from this family
of ciphers.
Of course, there are many other possible variations of Skipjack, e.g., we can vary the

way the round counter is injected into each round, and we can vary the key schedule
and the S-box used. However, the attacks we present in this paper on variants of
Skipjack would work more or less with unchanged complexities for any of these other
modi=cations.
This paper is organized as follows. First, Section 2 describes Skipjack and introduces

some other important background material. Section 3 examines the relationship between
the A- and B-rounds. Then in Section 4, we study the round ordering of Skipjack and
show that Skipjack’s ordering seems to be better than many natural alternatives. Next,
we consider the importance of the round counter in Section 5. Afterwards, we sum up
and discuss our results in Section 6.

2. Background

Skipjack is a block cipher that supports a 64-bit block size and a 80-bit key. The
block is internally divided into four 16-bit words, where each round applies a keyed
non-linear permutation to one word from the block.
Skipjack uses two di<erent types of round functions, the A-rounds and the B-rounds.

Each encryption consists of a total of 32 rounds, applied in a speci=c order: =rst we
apply 8 A-rounds, then 8 B-rounds, then another 8 A-rounds, and =nally we =nish with
8 more B-rounds. We repeat the de=nitions of the A-rounds and the B-rounds here for

1 Of course, we cannot prove that Skipjack is strong, but so far it appears to resist attacks where its
cousins cannot.
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Fig. 1. The two rounds used in Skipjack.

convenience:

A(a; b; c; d) = (d+ Gk(a) + counter; Gk(a); b; c);

B(a; b; c; d) = (d;Gk(a); a+ b+ counter; c):

A−1(a; b; c; d) = (G−1
k (b); c; d; a+ b+ counter);

B−1(a; b; c; d) = (G−1
k (b); c + G−1

k (b) + counter; d; a):

In this paper, ‘+’ denotes the bitwise exclusive-or operation, and ‘counter’ stands for a
round counter that starts at 1 and counts up to 32. See Fig. 1 for an illustrated version.
The Gk box takes a 16-bit input and a 4-byte subkey k, and is itself a 4-round

Feistel cipher using in each round a byte permutation F and a key-byte ki. It follows
that the inverse of G is equal to G itself using the subkeys in reverse order, except
for a swap of the halves of both the input and the output. All of the remarks in this
paper are independent of the speci=c choice of the byte permutation F and are instead
directed at the high-level structure of Skipjack.
The Skipjack key schedule speci=es how each 32-bit round subkey k is derived from

the 80-bit key K . The 80-bit key K is split up into ten bytes, denoted K0 through K9.
Then the key bytes are repeated in rotating order, and each round takes the next 32 bits
for use as its subkey. For example, the =rst round uses K0; : : : ; K3, the second round
uses K4; : : : ; K7, and the third round uses K8; K9; K0; K1.
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We assume that the reader has some passing familiarity with the fundamentals of
truncated di<erential cryptanalysis [9,10], but we will brieMy review the basic ideas
here. In a di<erential attack, the attacker chooses two plaintexts with a speci=ed di<er-
ence between them and attempts to predict with some probability how the di<erence
will evolve during the encryption process. The de=ning feature of a truncated di<eren-
tial attack is that the cryptanalyst predicts the di<erence for only some portion of the
block, leaving the remainder of the di<erence unpredicted. For this paper, the di<erence
of two texts T; T ′ will refer to the exclusive-or T + T ′ of their values.
In the analysis of Skipjack, it is natural to break the block into four 16-bit words

and to predict the di<erence of some of those words. In this paper, our predictions
will specify for each word whether that word should be zero or non-zero; note that we
usually do not attempt to distinguish between the 216 − 1 non-zero values. Thus, we
might use the notation (a; b; 0; c) to refer to a di<erence that is predicted to be zero

in its third word, and write (0; 0; a; 0) 1rA→(0; 0; 0; a) for a 1-round truncated di<erential
which predicts that the output di<erence after 1 A-round will take the form (0; 0; 0; a)
when the input di<erence has the form (0; 0; a; 0).
With this notation, we easily obtain some trivial truncated di<erentials of proba-

bility one, such as (a; 0; 0; 0) 1rA→(b; b; 0; 0) and (0; a; 0; 0) 4rA→(b; b; 0; 0) and (a; a; 0; 0) 4rB→
(b; 0; 0; 0), as well as some non-trivial truncated di<erentials, e.g. (a; 0; 0; b) 1rA→(0; b; 0; 0)
which holds with probability 1=(216 − 1) when a; b represent arbitrary non-zero 16-bit
values. Also, the r-round di<erential � → �′ may be concatenated with a s-round dif-
ferential � → �′ when the intermediate di<erences agree (i.e., �′ = �), and in this case
we obtain a (r + s)-round di<erential � → �′ whose probability is the product of the
original di<erentials’ probabilities.
If we are able to =nd a truncated di<erential of suNciently large probability that

covers all 32 rounds of Skipjack, we may be able to distinguish Skipjack from an
ideal cipher. Moreover, a good truncated di<erential for all but the last round often
allows us to recover key material by guessing the last-round subkey and checking for
right pairs that follow the di<erential.
The technique of structures is useful in many truncated di<erential attacks since it

allows us to generate large pools of candidate pairs using a relatively small number
of chosen texts. For instance, we can obtain 22n−1 pairs of texts with input di<erence
of the form (0; a; b; c) by requesting the encryption of 2n chosen plaintexts whose =rst
word is =xed (for n648). These 2n texts are collectively called a structure, and if we
want more than 295 pairs we may obtain many structures by using di<erent values of
the =rst word for each structure.
Similarly, many techniques are known for eNciently identifying right pairs and for

recovering key material from them. See the literature [9,10] for more details.

3. The relationship between A- and B-rounds

The Skipjack A- and B-rounds are closely related in their internal structure: the
structure of a B-round is almost the structure of the inverse of an A-round, di<ering



L. Knudsen, D. Wagner /Discrete Applied Mathematics 111 (2001) 103–116 107

only by a word-wise swap before and after. However, it may not be immediately
obvious why this particular relationship was chosen in Skipjack or that this choice has
important implications for the security of Skipjack. In this section, we explore this
subject more closely, develop several apparent design principles, and show why all the
other choices lead to serious weaknesses in the cipher.

3.1. The equivalence of encryption and decryption

The encryption and decryption functions of Skipjack may be written as

EK (x) = B8 ◦ A8 ◦ B8 ◦ A8(x); (1)

DK (y) = (A−1)8 ◦ (B−1)8 ◦ (A−1)8 ◦ (B−1)8(y): (2)

Beware: the symbol A should be thought of not as a speci=c transformation — because
of the round constants and the key schedule, each keyed instance of the cipher will
apply di<erent transformations in di<erent rounds — but rather as a shorthand for the
high-level structure of the cipher. In other words, (1) should be interpreted as saying
that the structure of Skipjack encryption uses 8 A-rounds followed by 8 B-rounds, and
so on.
Let A−1 denote decryption in an A-round. De=ne �(a; b; c; d) = (b; a; d; c), or equiv-

alently, in cycle notation, � = (1 2)(3 4). Note that � = (1 2)(3 4) is an involution, so
that �−1 = �. Then a B-round can be expressed in terms of � and the inverse of an
A-round,

B(a; b; c; d) = (� ◦ A−1 ◦ �)(a; b; c; d):

(Beware: the Gk box is not an involution, so the symbol A−1 in the formula should
be thought of as a shorthand reference to the structure of the inverse A-round, but
using Gk rather than G−1

k .) In other words, encryption through a B-round may be
implemented as decryption through an A-round preceded and followed by a �-swap
(except for inverting Gk). The encryption function of Skipjack may then be written as

EK = (� ◦ A−1 ◦ �)8 ◦ A8 ◦ (� ◦ A−1 ◦ �)8 ◦ A8

= � ◦ (A−1)8 ◦ � ◦ A8 ◦ � ◦ (A−1)8 ◦ � ◦ A8:

In this notation the decryption function of Skipjack can be written as

DK = (A−1)8 ◦ � ◦ A8 ◦ � ◦ (A−1)8 ◦ � ◦ A8 ◦ �:

Note the strong similarity: the structure of encryption and decryption di<er only by a
�-swap before and after the cipher.
Thus, the design of the A- and B-rounds seems to be an implementation feature. (See

also Section 4 for another example of how this implementation consideration bears on
the round ordering.) As a result, we get the following observation.

Fact 1. The decryption function in Skipjack has exactly the same structure as the en-
cryption function except for the application of a byte-wise swap in both the plaintext
and the ciphertext.
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This property also has the following obvious implication.

Fact 2. With uniformly chosen keys; Skipjack has equal security against chosen
plaintext attacks and chosen ciphertext attacks.

These two properties seem to be an important design principle for Skipjack-like
ciphers, and in particular this illustrates an important facet of the relationship between
the A- and B-rounds in Skipjack.

3.2. The choice of �

The above-described similarity between encryption and decryption in Skipjack would
also be valid for any other involution �, including the identity function. In the following
we give a possible explanation why �= (1 2)(3 4) was chosen in the oNcial Skipjack
cipher.
To understand the implications of other choices for �, we must look at the inter-

action between A- and B-rounds. Recall that B = � ◦ A−1 ◦ �. Clearly, an A-round
followed by an inverse A-round is unfortunate, since three of four words will be left
unencrypted (through G) in two rounds of encryption. This suggests that taking �=id
could signi=cantly weaken the cipher and thus would be a poor choice.

Good choices for �. To examine the good choices of involutions �, consider four
consecutive rounds. If all rounds are either A-rounds or inverse A-rounds, all four words
input to the four rounds will have been encrypted (through G). Therefore, consider the
following choices of four rounds with a transition from A-rounds to inverse A-rounds:
1. A−1 ◦ A−1 ◦ � ◦ A ◦ A,
2. A−1 ◦ � ◦ A ◦ A ◦ A,
3. A−1 ◦ A−1 ◦ A−1 ◦ � ◦ A.
Since 2 and 3 are the inverses of each other it suNces to consider cases 1 and 2. Let
the four input words be (a; b; c; d) and =nd the possible involutions �, such that after
four rounds of encryption, in each of the cases 1. and 2., none of a; b; c; d appears
unencrypted (through G). It is easily checked that after two A-rounds the input words
b and c have not yet been input to the G-function. With e.g., � = id it is also easily
checked that these two words are unencrypted after an additional two inverse A-rounds.
It turns out that for 1, the only possible involutions with the desired property are
(1 2)(3 4) and (1 3)(2 4). However, for the latter, case 2 leaves the input word b,
unencrypted. And indeed, the only � which has the desired property is (1 2)(3 4), as
chosen in Skipjack. Any other choice of � would weaken the cipher by introducing a
4-round subsequence that leaves one input word unencrypted under G.
We conclude that the involution � was presumably introduced to strengthen Skipjack

and to minimize the negative interaction of A and A−1.
Still, we are yet to answer the question of why use 8 A-rounds followed by 8

B-rounds and not, e.g., 4 A-rounds followed by 4 B-rounds. This question is answered
in the following section.
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Table 1
Attacks on some Skipjack variants with a di<erent round orderinga

Attack complexity
Round ordering Rounds Texts Time

(A; B)∗ ∞ 2 CP or 216:5 KP —
(2A; 2B)∗ ∞ 2 CP or 216:5 KP —
(3A; 3B)∗ 32 233 CP 233

(3A; 4B)∗ ∞ 2 CP or 28 KP —
(4A; 3B)∗ ∞ 2 CPor 28 KP —
(16A; 16B)∗ 28 256 KP 256

aNotation: KP = known plaintexts; CP = chosen plaintexts.

4. The round ordering: why (8A; 8B)?

In this section the interaction between A-rounds and B-rounds is closely examined.
The structure of Skipjack variants using n A-rounds followed by m B-rounds will be
referred to as an (nA; mB)∗ structure.
We begin by introducing a simple design goal:

Design principle 1. Encryption and decryption should be symmetrical.

This goal is clearly desirable, because it simpli=es implementation e<orts and ensures
equivalent security against chosen plaintext and chosen ciphertext attacks; see Section
3.1. The above design principle immediately has the following implication.

Corollary 1. One should consider only the symmetrical structures (nA; mB)∗, i.e.,
those where n= m.

This design principle allows us to narrow down the search space by eliminating all
structures with n �= m. Moreover, it explains why the oNcial Skipjack cipher uses a
(nA; mB)∗ round structure where n=m: any other choice would forfeit the advantages
of a symmetrical cipher. Still, it does not explain why n = 8 is chosen in the oNcial
Skipjack standard, or help us understand whether other round orderings might not
improve on the standard construction.
In this section, we examine several natural alternative round orderings for Skipjack

and show that many of them allow for better attacks than those available in the real
Skipjack construction. For the remaining constructions, truncated di<erentials have been
identi=ed, which have much higher probabilities than for real Skipjack. It is left as an
open question to apply these di<erentials in cryptanalytic attacks. See also Table 1 for
a summary of our attacks on the variants with a di<erent round ordering.
We start by examining why it is better to start with A-rounds and end with B-rounds;

this reduces the search space by a factor of two. Then, we eliminate most of the
remaining round orderings by exhibiting truncated di<erential attacks.
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In the following we write Gk(·) for every application of G, where the subscript k
is =xed to indicate that the function is keyed, and we omit the round counter.

4.1. Why A before B?

One natural question when looking at Skipjack is why use the A-rounds before the
B-rounds. Does the ordering make a di<erence to the security of Skipjack? We argue
that the answer is yes, that Skipjack’s ordering is preferable to the alternative, and that
this is a crucial design principle with important rami=cations on security.
Di<usion considerations hint at why this might be so. A-rounds exhibit better dif-

fusion (in the encryption direction) than B-rounds, so it is natural to suspect that it
might be better to start with the best di<usion available. In the following, we show how
truncated di<erential cryptanalysis may be used to develop more persuasive evidence
for this design principle.
We also note that an earlier work [10] already shows some indications of this design

principle. This paper analyzed two 16-round Skipjack variants, a (8A; 8B) variant and
a (8B; 8A) variant, =nding attacks on the former with 217 chosen plaintexts and 234

work, while the latter can be broken with just 2–3 chosen texts and 246–229 work. The
dramatic di<erence in security between the two variants suggests that the order of the
rounds may be very important.
A deeper inspection of [10] reveals strong evidence that reversing the ordering of

the A- and B-rounds can be harmful in two important ways:
Starting with B-rounds makes it easier to <nd long truncated di=erentials The

authors of [10] found a 12-round truncated di<erential of probability 1 for the variant
starting with B-rounds, whereas the =rst 12 rounds of the di<erential used to analyze
the variant starting with A-rounds has probability 2−32. In general, B-rounds exhibit
poor di<usion in the forward direction, and thus it is easier to pass through B-rounds
with a truncated di<erential.
Ending with A-rounds makes it easier to use these truncated di=erentials in a

key-recovery attack. A second factor that made the attack on (8B; 8A) so eNcient is
the relative ease of peeling o< the =nal rounds of a cipher which ends with A-rounds.
That attack may be viewed as a 7-R attack which needs to guess a surprisingly small
amount of key material to be able to look deep inside the cipher. (Compare to the
(8A; 8B) cipher, where only a 1-R analysis was possible because of the quantity of key
material that must be guessed to peel o< more than one round [10].) In general, this
property is to be expected: A-rounds exhibit poor di<usion in the reverse direction, so
peeling o< a few =nal A-rounds is not diNcult.
All in all, the e<ect is that shorter truncated di<erentials may be used when analyzing

a cipher that ends with A-rounds; this, of course, usually increases the eNciency of the
attack.
For Skipjack-like constructions, we conclude that starting with A-rounds and ending

with B-rounds is likely to be stronger than the alternative.
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Additional evidence for this proposition may be found below, where we show that
the (8B; 8A)2 Skipjack-variant is more vulnerable to truncated di<erential cryptanalysis
than the standard (8A; 8B)2 version.

4.2. Truncated di=erentials

Structure (A; B)∗. Consider an A-round followed by a B-round. The encryption function
over these two rounds is (omitting the counter)

f(a; b; c; d) = (c; Gk(Gk(a) + d); d; b):

As seen, the two outer output words depend only on the two middle input words,
and the two middle output words depend only on the two outer input words. This
means that the variant (A; B)∗ is very weak, since there are truncated di<erentials of
probability 1 for any number of rounds. The following 4-round truncated di<erential
holds with probability one and can be iterated to any number of rounds:

(a; 0; 0; b) 1rA1rB→ (0; c; d; 0) 1rA1rB→ (e; 0; 0; f);

where (a; b) �= (0; 0); (c; d) �= (0; 0); and (e; f) �= (0; 0). In other words, the (A; B)∗

cipher exhibits poor di<usion: changing any of the middle bits of the plaintext does
not a<ect the outer bits of the ciphertext.
As a result, we can distinguish the (A; B)∗ cipher from a random permutation with

two chosen texts or with 216:5 known texts. Moreover, this result holds for any number
of rounds.

Structure (2A; 2B)∗. Consider 2 A-rounds followed by 2 B-rounds. The encryption
function over these four rounds is (omitting the counter)

f(a; b; c; d) = (Gk(a); Gk(b); h(a; b; c; d); c);

where h is some function dependent on all four input words. It is seen, that the =rst
two words of the output do not depend on the third and fourth words of the input.
Thus in this variant, there exist 4-round iterative truncated di<erentials with probability
one:

(0; 0; a; b) 2rA2rB→ (0; 0; c; d);

where (a; b) �= (0; 0) and (c; d) �= (0; 0).
One consequence is that the (2A; 2B)∗ cipher — with any number of rounds — can

be broken with two chosen texts or with 216:5 known texts.
As in the case of the (A; B)∗ cipher, this weakness may also be viewed as a simple

di<usion failure. However, we will see shortly that truncated di<erentials provide a
more sensitive measure of di<usion than is available with conventional techniques, so
we will =nd it useful to apply the machinery of truncated di<erential cryptanalysis
throughout.
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Structure (3A; 3B)∗. There are 21-round truncated di<erentials of probability one and
there are impossible di<erentials for at least 30 rounds. The following di<erential has
probability zero:

(0; a; 0; 0)
(3rA3rB)5→ (0; 0; 0; b):

This di<erential was found by concatenating two 15-round di<erentials, each of prob-
ability one. A pair of plaintexts with di<erence (0; a; 0; 0) leads to a di<erence in the
ciphertexts after 15 rounds of (c; d; e; 0). Similarly, a pair of ciphertexts of di<erence
(0; 0; 0; b) decrypts back in 15 rounds to ciphertexts of di<erence (f; g; 0; h), where
h �= 0. Thus, there is a miss-in-the-middle [3] and a di<erential of probability 0 over
30 rounds. This situation is much better for the attacker than in the case of the original
Skipjack, where only 24 rounds can be covered with such di<erentials [3]. In addition,
the 30-round di<erential may be concatenated with a truncated di<erential of proba-

bility one over 2 A-rounds: (0; 0; 0; b) 2rA→(c; c; 0; 0); where c �= 0. In total, this yields
a 32-round di<erential of probability zero, and thus, 32 rounds of (3A; 3B)∗ can be
distinguished from random with about 233 chosen plaintexts. Using structures of 216

plaintexts di<erent in the second words only, one can form about 231 pairs with the
di<erence (0; a; 0; 0). With 217 such structures one obtains totally 248 pairs of plain-
texts. Using this Skipjack variant, the resulting pairs of ciphertexts will never have the
di<erence (c; c; 0; 0), whereas for a randomly chosen permutation one expects one such
pair.

Structure (3A; 4B)∗. Although we have argued already that one should use only struc-
tures (nA; mB)∗ with n=m, we include this variant because it is extremely weak. There
is a 7-round iterative, truncated di<erential of probability one:

(0; a; b; c) 3rA4rB→ (0; d; e; f):

As a result, any number of rounds of the (3A; 4B)∗ construction can be distinguished
from a randomly chosen permutation with two chosen texts or with 28:5 known texts.
Because of the symmetry of A- and B-rounds (see Section 3) a similar result holds for
(4B; 3A)∗.

Structure (4A; 4B)∗. In this variant there exist 31-round truncated di<erentials with
probability 2−48. For example,

(0; a; b; c) 4rA4rB→ (d; 0; e; f) 4rA4rB→ (0; g; h; i) 4rA4rB→ (j; 0; k; m) 4rA3rB→ (n; 0; p; q):

The =rst and third 8 rounds have probabilities one. The second 8 rounds have a prob-
ability of 2−32 and the last 7 rounds a probability of 2−16. There are several truncated
di<erentials of this form, so the probability is higher than stated.
The probabilities of the found di<erentials are much higher than for similar di<eren-

tials found for (unmodi=ed) Skipjack. This provides evidence that Skipjack’s (8A; 8B)∗

is preferable to the (4A; 4B)∗ alternative.
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Structure (8B; 8A)2. There is a 28-round truncated di<erential with probability 2−32.

(0; a; 0; 0) 8rB→(0; b; c; a) 8rA→(d; d; e; f) 8rB→(0; e; f; g) 4rA→(h; h; i; j):

The =rst 8 rounds and the last 4 rounds have probabilities 1. The second and third 8
rounds have each a probability of 2−16.
We have already seen theoretical reasons to be very skeptical of ciphers that start

with B-rounds or end with A-rounds. The above di<erential has a probability higher
than what have been identi=ed for real Skipjack. This provides additional evidence that
starting with B-rounds or ending with A-rounds may reduce security.

Structure (16A; 16B)1. This is the only remaining natural alternative to (8A; 8B)2. Trun-
cated di<erential cryptanalysis does not seem as powerful against the (16A; 16B)1 struc-
ture as for the other alternatives, and we do not know of any compelling attacks against
the full 32-round (16A; 16B) cipher.
However, the middle 28 rounds of (16A; 16B) may be distinguished from a random

cipher using known plaintexts and truncated di<erentials. By easy calculations one =nds
the following truncated di<erential of probability one:

(a; a; 0; 0) 14rB→ (b; c; d; e); c �= 0:

Because of the symmetry between A- and B-rounds there is a similar di<erential for
decryption through 14 A-rounds. With 256 known texts, we get 2111 pairs, of which
263 will have the di<erence (a; a; 0; 0) in the middle. We =lter, looking for pairs whose
di<erence has second ciphertext word and =rst plaintext word both non-zero. For a
random cipher, we expect n = (1 − 2−16)2 × 2111 such pairs, with standard devia-
tion about 248. For the Skipjack-variant, we expect (1 − 2−16)2×(2111 − 263) + 263≈
n+248 such pairs, which is about one standard deviation above the mean for a random
cipher.
Therefore, with 256 known texts and very little computation we may distinguish the

middle 28 rounds of (16A; 16B) from a randomly chosen permutation. This does not
prove that the (16A; 16B)1 structure is weaker than (8A; 8B)2, but it may indicate a
perhaps-undesirable property of the (16A; 16B) structure.

5. The round counter and the key schedule

The key-schedule of Skipjack is remarkably simple when compared to the key-
schedules of other modern block ciphers, e.g., the AES candidates. The =ve candidates
of the =nal round of the AES process have complex key-schedules and the round
keys are often encrypted. In Skipjack the round key bytes are computed by a simple
rotation of the input key bytes. The above Facts 1 and 2 look like design principles of
Skipjack and could also explain the role of the counter. Without the counter there will
be keys for which encryption and decryption will be very similar (with the exception
of an application of � to both plaintext and ciphertext), and pairs of keys for which
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encryption with one key is very similar to decryption with another key [2]. Such
keys are present in the DES [11] and regarded as weak keys. With the counter, these
problems seem to disappear.

6. Discussion

These observations suggest several general principles for the design of Skipjack-like
ciphers:
Seek symmetry. A cipher is symmetrical if encryption and decryption have the same

structure. Symmetry is a bene=cial implementation property which simpli=es the task
of implementation and which may reduce resource requirements, since one can support
both encryption and decryption at once with just one cryptographic engine. Also, a
symmetrical cipher has identical resistance to chosen-plaintext and chosen-ciphertext
attacks, which is a desirable security property. This is not a new observation — see,
e.g., [1,6,15] — but it does not seem to be as widely known as it perhaps could be
[8,16].
Avoid too much symmetry. Of course, symmetry sometimes allows for clever crypt-

analytic attacks. In Skipjack, symmetry is broken with round counters, and this helps
avoid, e.g., complementation properties and slide attacks. While this design principle
may seem to contradict the previous one, the conMict is not so bad as it may =rst
appear. The Skipjack round counters appear to prevent most attacks that attempt to
exploit their symmetry, while retaining the equivalence between chosen-plaintext and
chosen-ciphertext security against a very large class of attacks (namely, the class of all
attacks that ignore the round counters — and note that this class includes di<erential
and linear cryptanalysis as well as their variants).
Minimize bad interactions between the round-types. We have seen considerable

evidence that the A- and B-rounds interact poorly where they are applied in consecutive
rounds. In general, transitions between round-types appear to reduce security. Moreover,
if � is not chosen carefully, this bad e<ect can be much worse than necessary.
We expect that these principles will also be applicable to other ciphers with similar

structure, including FROG [8] and CAST-256 [1].
We have also answered a number of detailed questions about the design and structure

of Skipjack. We summarize some of those contributions here:
Why two types of rounds? The reason Skipjack does not use just A-rounds or

B-rounds is that both round types exhibit considerable asymmetry: for example, A-rounds
have excellent di<usion in the forward (encryption) direction, but very poor di<usion
in the reverse (decryption) direction; B-rounds behave dually.
Why are B-rounds a near-inverse of A-rounds? This arrangement allows us to build

a symmetrical cipher out of asymmetrical round functions: if B=A−1, then the (nA; nB)∗

structure is self-inverse. More generally, if B=�−1◦A−1◦� where �=�−1, the resulting
construction is also self-inverse (up a bit-permutation before and after the cipher). This
also explains why � is an involution in Skipjack.
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Why use �=(1 2)(3 4)? Skipjack uses a word permutation which may be expressed
in cycle notation as �=(1 2)(3 4). It turns out that this is the unique permutation which
maximizes security and minimizes the bad interaction at the boundary between A- and
B-rounds. See Section 3.
Why apply A-rounds before B-rounds? This ordering makes it much harder to peek

deep inside the cipher. With B-rounds before A-rounds, one may mount a 7-R attack and
look as far as 7 rounds, into the cipher, without too much e<ort; but applying A-rounds
=rst makes it very expensive to look more than one round deep (i.e., 2-R attacks
are too costly). Also, the (8B; 8A)∗ structure is weaker against truncated di<erential
cryptanalysis than the real (8A; 8B)∗ cipher. See Section 4.
Why use (8A; 8B)∗? All of the alternatives we have examined appear to weaken the

security of Skipjack. In particular, the (nA; mB) constructions with n; m¡ 8 are espe-
cially vulnerable to truncated di<erential cryptanalysis; and the (nA; mB)∗ constructions
with n; m¿ 8 allow the cryptanalyst to =nd better truncated di<erentials for each half
of the cipher. Also note that symmetry considerations suggest we should use n= m.
Why use a round counter? Eliminating the round counter from Skipjack introduces

complementation properties that can be used to speed up exhaustive keysearch [2,3].
Also, constructions without round counters appear to be more susceptible to slide at-
tacks [4].
Why use a 80-bit key? With a longer key, di<erential-style attacks would have a

lower complexity than exhaustive keysearch [3], so it is natural to choose 80 bits as
an upper bound on the e<ective keylength of the algorithm. At the same time, keys
much shorter than 80 bits are too weak to resist exhaustive keysearch for long [5].
Our ‘explanations’ of why Skipjack looks the way it does, must (of course) be

categorized as unproven conjectures. Nonetheless, we feel that the body of the evidence
supports our view.
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