
SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA

LINAS VEPŠTAS

ABSTRACT. This document develops general concepts useful for extracting knowledge
embedded in large graphs or datasets that have pair-wise relationships, such as cause-
effect-type relations. Almost no underlying assumptions are made, other than that the data
can be presented in terms of pair-wise relationships between objects/events. This assump-
tion is used to mine for patterns in the dataset, defining a reduced graph or dataset that
boils-down or concentrates information into a more compact form. The resulting extracted
structure or set of patterns are manifestly symbolic in nature, as they capture and encode
the graph structure of the dataset in terms of a (generative) grammar. This structure is
identified as having the formal mathematical structure of a sheaf. In essence, this paper
introduces the basic concepts of sheaf theory into the domain of graphical datasets.

INTRO

This document presents some definitions and vocabulary for working with datasets that
contain complex relationships, applicable to a large variety of application domains. The
concepts borrow from graph theory, and several other areas of mathematics. The goal is
to define a way of thinking about complex graphs, and how they can be simplified and
condensed into simpler graphs that “concentrate” embedded knowledge into a more man-
ageable size. The output of the process is a grammar that summarizes or captures the
significant or important relationships.

The ideas described here are not terribly complex; they represent a kind-of “folk knowl-
edge” generally known to a number of practitioners. However, I am not currently aware
of any kind of presentation of this information, either in review/summary form, or as a
fully articulated book or text. The background knowledge appears to be scattered across
wide domains, and occur primarily in highly abstract settings, outside of the mainstream
computer-science and data-analysis domain. Thus, this document tries to provide an intro-
duction to these concepts in a plain-spoken language. The hope is to be precise enough that
there will be few complaints from the mathematically rigorous-minded, yet simple enough
that “anyone” can follow through and understand.

Some examples are provided, primarily drawn from linguistics. However, the concepts
are generally applicable, and should prove useful for analyzing any kind of dataset ex-
pressed with pair-wise relationships, but containing hidden (non-obvious) complex cause-
and-effect relationships. Such datasets include genomic and proteomic data, social-graph
data, and even such social policy information.

Consider the example of determining the effectiveness of educational curricula. When
teaching students, one never teaches advanced topics until foundations are laid. Yet many
students struggle. Given raw data on a large sample of students, and the curricula they were
subjected to, can one discern sequences and dependencies of cause-and-effect in this data?
Can one find the most effective curriculum to teach, that advances the greatest number of
students? Can one discover different classes of students, some who respond better to one

Date: 12 November 2017.
1

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 2

style than another? My belief is that these questions can not only be answered, but that the
framework described here can be used to uncover this structure.

Another example might be the analysis of motives and actions in humans. This in-
cludes analysis from real life, as well as the narratives of books and movies. In a book
setting, the author cannot easily put characters into action until some basic sketch of
personality and motives is developed. Motives can’t be understood until a setting is es-
tablished. If one can break down a large number of books/movies into pairs of related
facts/scenes/remarks/actions, one can then extract a grammar of relationships, to see ex-
actly what is involved in the movement of a narrative from here to there.

Much of this document is devoted to stating definitions for a few key structures used to
talk about the general problem of discerning relationships and structure. The definitions
are inspired by and draw upon concepts from algebraic topology, but mostly avoid both the
rigor and the difficulty of that topic.

The definitions provide a framework, rather than an algorithm. It is up to the user to
provide some mechanism for judging similarity - and this can be anything: some neural
net, Bayesian net, Markov chain, or some vector space or SVM-style technique; the overall
framework is agnostic as to these details. The goal is to provide a way of talking about,
thinking about and presenting data so that the important knowledge contained in it is cap-
tured and described, boiled down to a manageable, workable state from a large raw dump
of pair-relationship data.

Currently, the ideas described here are employed in a machine-learning project that
attempts to extract the structure of natural language in an unsupervised way. Thus, the
primary, detailed examples will come from the natural language domain. The theory should
be far more general than that.

This document resides in, accompanies source code that implements the ideas here.
Specifically, it is in https://github.com/opencog/atomspace/tree/master/opencog/sheaf and
it spills over into other files, such as https://github.com/opencog/opencog/blob/master/
opencog/nlp/learn/scm/gram-class.scm This code is in active development, and is likely
to have changed by a lot since this was written. This document is not intended to describe
the code; rather, it is meant to describe the general underlying concepts.

For the mathematically inclined, please be aware that the concepts described here touch
on the tiniest tips of some very deep mathematical icebergs, specifically in parsing, type
theory and category theory. I have no hope of providing the needed background, as these
fields are sophisticated and immense. The reader is encouraged to study these on their
own, especially as they are applied in computer science and linguistics. There are many
good texts on these topics.

This document is organized as follows. The first part of provides a definition of a
“section” of a graph. A section is a lot like a subgraph, except that it explicitly indicates
which edges were cut to form the subgraph. The next part defines and articulates the
concept of projection, and shows how it can be used to form quotients. The quotients or
projections are termed “stalks”, and, because each stalk comes festooned with connectors,
they can be thought to resemble corn-stalks. The next part shows how stalks can be tied
together to form sheaves, and reviews the axioms of sheaf theory to show that this name is
appropriate.

After this comes a lighting review of how data mining, pattern mining and clustering
can be viewed in the context of sheaves. After this come two asides: a quick sketch of type
theory, illustrating the interplay between data-mined patterns and the concept of types.
Another aside reviews the nature of parsing, illustrating that parsing algorithms implement

https://github.com/opencog/atomspace/tree/master/opencog/sheaf
https://github.com/opencog/opencog/blob/master/opencog/nlp/learn/scm/gram-class.scm
https://github.com/opencog/opencog/blob/master/opencog/nlp/learn/scm/gram-class.scm

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 3

the gluing axiom of sheaves, viz, that gluing and parsing are the same thing. The final part
examines polymorphic behavior. Polymoprhism is that point where syntax begins to touch
semantics, where deep structure becomes distinguished from surface structure.

SECTIONS

Begin with the standard definition of a graph.

Definition. A GRAPH G = (V,E) is an ordered pair (V,E) of two sets, the first being the
set V of vertices, and the second being the set E of edges. An edge e ∈ E is a pair (v1,v2)
of vertices, where every vk must be a member of V . That is, edges in E can only connect
vertexes in V , and not to something else. �

For directed graphs, the vertex ordering in the edge matters. For undirected graphs, it
does not. The subsequent will mostly leave this distinction unspecified, and allow either
(or both) directed and undirected edges, as the occasion and the need fits. Distinguishing
between directed and undirected graphs is not important, at this point. In most of what
follows, it will usually be assumed that there are no edges with v1 = v2 (loops that connect
back to themselves) and that there is at most one edge connecting any given pair of ver-
texes. These assumptions are being made to simplify the discussion; they are not meant to
be a fundamental limitation. It just makes things easier to talk about and less cluttered at the
start. The primary application does not require either construct, and it is straight-forward
to add extensions to provide these features. Similar remarks apply to graphs with labeled
vertexes or edges (such as “colored” edges, vertexes or edges with numerical weights on
them, etc). Just keep in mind that such additional markup may appear out of thin air, later
on.

Besides the above definition, there are other ways of defining and specifying graphs.
The one that will be of primary interest here will be one that defines graphs as a collection
of sections. These, in turn, are composed of seeds.

Definition. A SEED is a vertex and the set of edges that connect to it. That is, it is the pair
(v,Ev) where v is a single vertex, and Ev is a set of edges containing that vertex, i.e. that
set of edges having v as one or the other endpoint. The vertex v may be called the GERM
of the seed. For each edge in the edge set, the other vertex is called the CONNECTOR.�

It should be clear that, given a graph G, one can equivalently describe it as a set of seeds
(one simply lists all of the vertexes, and all of the edges attached to each vertex). The
converse is not “naturally” true. Consider a single seed, consisting of one vertex v1, and
a single edge e = (v1,v2). Then the pair (V,E) with V = {v1} and E = {(v1,v2)} is not a
graph, because v2 is missing from the set V . Of course, we could implicitly include v2 in
the collection of vertexes, but this is not “natural”, if one is taking the germs of the seeds
to define the vertexes of the graph.

Thus, given a seed, each edge in that seed has one “connected” endpoint, and one “un-
connected” endpoint. The “connected” endpoint is that endpoint that is v. The other end-
point will commonly be called the CONNECTOR; equivalently, the edge can be taken to be
the connector. Perhaps it should be called a half-edge, as one end-point is specified, but
missing.

The seed can be visualized as a ball, with a bunch of sticks sticking out of it. A burr
one might collect on one’s clothing. One can envision a seed as an analog of an open set
in topology: the center (the germ) is part of the set, and then there’s some more, but the
boundary is not part of the set. The vertexes on the unconnected ends of the edges are not
a part of the seed.

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 4

FIGURE 0.1. A seed

Just as one can cover a topological space with a collection of open sets, so one can
also cover a graph with seeds. This analogy is firm: if one has open sets Ui and U j and
Ui∩U j 6= /0 then one can take Ui and U j to be vertices, and Ui∩U j to be an edge running
between them.

More definitions are needed to advance the ideas of connecting and covering.

Definition. A SECTION is a set of seeds. �

It should be clear that a graph G can be expressed as section; that section has the nice
property that all of the germs appear once (and only once) in the set V of G, and that all
of the edges in E appear twice, once each in two distinct seeds. This connectivity property
motivates the following definition:

Definition. Given a section S, a LINK is any edge (v1,v2) where both v1 and v2 appear as
germs of seeds in S. Two seeds are CONNECTED when there is a link between them. �

This definition of a link is imprecise. A more proper, technical definition is that a link
can be formed only when the germ v1 has v2 as a connector, and also, at the same time,
the germ v2 has v1 as a connector; only then can the two be joined together. The joining
is meant to be optional, not mandatory: just because a section contains connectors that can
be joined, it does not imply that they must be. The joining is also meant to consume the
connectors as a resource: once two connectors have been connected, neither one is free to
make connections elsewhere.

FIGURE 0.2. Two linked (connected) seeds

The use of links allows the concepts of paths and connectivity, taken from graph theory,
to be imported into the current context. Thus, one can obviously define:

Definition. A CONNECTED SECTION, or a CONTIGUOUS SECTION is a section where
every germ is connected to every other germ via a path through the edges. �

In graph theory, this would normally be called a “connected graph”, but we cannot
fairly call it that because the seeds and sections were defined in such a way that they are

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 5

not graphs; they only become graphs when they are fully connected. Never-the-less, it is
fairly safe and straight-forward to apply common concepts from graph-theory. Sections
are almost like graphs, but not quite.

Note that there are two types of edges in a section: those edges that connect to nothing,
and those edges that connect to other seeds in that section. Henceforth, the unconnected
edges will be called connectors (as defined above), while the fully-connected edges will
be called links (also defined above). Connectors can be thought of as a kind-of half-edge:
incomplete, missing the far end, while links are fully connected, whole.

Seeds and sections can (and should!) be visualized as hedgehogs - a body with spines
sticking out of it - the connectors can be thought of as the spiny bits sticking out, waiting
to make a connection, while the hedgehog body is that collection of vertices and the fully-
connected links between them.

FIGURE 0.3. A connected section

Implicit in the above definitions was that, during link formation, an edge is only allowed
to connect to another seed if and only if the connector matches the germ. That is, if (v1,v2)
is an edge rooted in the seed for v1 and if (v3,v4) is an edge rooted in the seed for v3, then
these two can form a link if and only if v2 = v3 and v4 = v1. That is, the connectors are
typed: they can only connect to seeds that are of the same type as the unconnected end of
the edge.

This motivates a different way of looking at seeds: they can be visualized as jigsaw
puzzle pieces, where any given tab on one jigsaw piece can fit into one and only one slot
on another jigsaw piece. This union of a tab+slot is the link. Connectors must be of the
same type in order to be connectible. The types of the connectors will later be seen to be
the same thing as the types of type theory; that is, they are bona-fide types, in the proper
sense of the word.

FIGURE 0.4. Joining two connectors to form a link

The jigsaw puzzle-piece illustration is not uncommon in the literature; such illustrations
are explicitly depicted in a variety of settings.[1, 2, 3, 4] The point being illustrated here

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 6

is that the connectors need not be specific vertexes, they can be vertex types, where any
connector of the appropriate type is allowed to connect. This can be formalized in an
expanded definition of a seed. A provisional definition of a type is needed, first.

Definition. A TYPE is a set of vertexes. Notationally, t = {va,vb, · · ·}. �

This allows the jigsaw concept to be expressed more formally.

Definition. A SEED is a vertex and the set of connector types that connect to it. That is,
it is the pair (v,Cv) where v is a vertex, and Cv is a set of connector types containing that
vertex, i.e. that set of edges having v as one endpoint and a type as the other endpoint. That
is, Cv = {(v, ta) ,(v, tb) , · · ·}. A single pair (v, t) can be called a CONNECTOR TYPE. �

The capital letter C is used to remind one that members of the set are connectors. The
intent of specifying connector types is exactly what the jigsaw-puzzle paradigm suggests:
links can be created, as long as the types match up. This is formalized by expanding the
definition of a link.

Definition. Given a section S, a LINK between seeds s1 = (v1,C1) and s2 = (v2,C2) is any
edge (v1,v2) where v1 is in one of the types in C2 and v2 is in one of the types in C1. That
is, there exists a pair (v1, ta) ∈C1 such that v2 ∈ ta and, symmetrically, there exists a pair
(v2, tb) ∈C2 such that v1 ∈ tb . Two seeds are CONNECTED when there is a link between
them. �

As before, the creation of links is meant to be optional, not forced. As before, the
connectors are meant to be consumable: once connected, they cannot be used again. The
figure below illustrates the idea.

FIGURE 0.5. Seed connectors might be types, not vertexes

Its important to realize that the standard approach to graph theory has been left behind.
Although it is possible to hook up seeds to form a graph, it is also possible to have a
collection of seeds that is not a graph: the category of sections contain the category of
graphs as a subset. Extending the notion of a connector to be the notion of a connector-
type in particular plays considerable violence to the notion of graph theory. As long as the
narrower definition of seed was used, one could imagine that a collection of seeds could be
assembled into a graph, and that assembly is unique. Once connector types are introduced,
the possibility that there are multiple, non-unique assemblages of seeds becomes possible.
A graph can be disassembled into seeds, and, if one is careful to label vertexes and edges
in a unique way, that collection can be viewed as isomorphic to the original graph. If one

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 7

is not careful, sloppily assigning labels or avoiding them entirely, the collection can have
multiple non-isomorphic re-assemblies. The ability to be sloppy in this way is one of the
appeals, one of the benefits of working with seeds and sections. They provide “elbow
room” not available in (naive) graph theory.

Why sections? Whats the point of introducing this seemingly non-standard approach to
something that looks a lot like graph theory? There are several reasons.

• From a computational viewpoint, sections have nice properties that a list of ver-
texes and edges do not. Given a single seed, one “instantly” knows all of the edges
attached to its germ: they are listed right there. By contrast, given only a graph
description, one has to search the entire list E for any edges that might contain the
given vertex. Computationally, searching large lists is inefficient, especially so for
very large graphs.

• The subset of a section is always a section. This is not the case for a graph: given
G = (V,E), some arbitrary subset of V and some arbitrary subset of E do not
generally form a graph; one has to apply consistency conditions to get a subgraph.

• A connected section behaves very much like a seed: just as two seeds can be linked
together to form a connected section, so also two connected sections can be linked
together to form a larger connected section. Both have a body, with spines sticking
out. The building blocks (seeds), and the things built from them (sections) have
the same properties, lie in the same class. Thus, one has a system that is naturally
“scalable”, and allows notions of similarity and scale invariance to be explored.
There is no need to introduce additional concepts and constructions.

• Given two seeds, one can always either join them (because they connect) or it
is impossible to connect them. Either way, one knows immediately. Graphs, in
general, cannot be joined, unless one specifies a subgraph in each that matches up.
Locating subgraphs in a graph is computationally expensive; verifying subgraph
isomorphism is computationally expensive.

• The analogy between graphs and topology, specifically between open sets and
seeds and the intersection of open sets and edges, allows concepts and tools to be
borrowed from algebraic topology.

If we stop here, not much is accomplished, other than to define a somewhat idiosyncratic
view of graph theory. But that is not the case; the concept of seeds and sections are needed
to pursue more complex constructions. They provide a tool to study natural language and
other systems.

Example: Biochemical reaction type. An example of a seed applied to the biochemical
domain would be the phosphorylation of ADP to ATP, shown in the figure below.

The germ of the seed is the point where the semi-circle kisses the line: not labeled here,
the germ would be succinate-CoA ligase. The connectors are labeled with their types, and
the arrows provide directionality. The connector types clearly indicate what can be linked
to what: this particular seed, when linked, must link to a source of ADP, or a source of
phosphate, or a sink if ATP or a sink of hydroxyls, if it is to be validly linked into any
part of a connected section. In this example, ADP and ATP can both be treated as simple

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 8

connectors, while R-OH does name a type: R can be any moiety. Implicit here, but not
explicit in the seed, is that the R group on both connectors must be the same.

An example of a connected section would be the Krebs cycle, taken as a whole:

Each distinct reaction constitutes a seed; the heavy lines forming the cycle are the links
internal to the section, and each tangent arrow is a pair of connectors, with one end of the
arrow being an unconnected reaction input, and the other end of the arrow an unconnected
reaction product. Thus, for example, connector types include NAD, NADH, water and
ATP, among others. These connectors are free to be attached to other seeds or sections.

This example may seem dubious, at this point of the presentation. That it is a valid
example should become clear with further development of the general principles in what
follows.

Similar concept: Link Grammar. Readers familiar with Link Grammar[1, 5] should
have recognized seeds as being more or less the same thing as “disjuncts” in Link Gram-
mar. The formal definition for Link Grammar disjuncts are a bit more complicated than
seeds, and is expanded on in later sections. To lay that groundwork, however, consider
an unlabeled dependency parse for the sentence “this is an example”, shown in the figure
below.

FIGURE 0.6. A dependency parse decomposed into four seeds

The dependency parse is shown as a graph, with four vertexes. Below, the parse is de-
composed into the component seeds; as always, the open dots are connectors, the closed
dots are the germs. Using the notation (v,Cv) for a seed, where Cv = {(v,va) ,(v,vb) , · · ·},
these seeds can be textually written as

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 9

this: {(this, is+)}
is: {(is, this-), (is, example+)}
an: {(an, example+)}
example: {(example, is-), (example, an-)}

The above vertex: edge-list notation is a bit awkward and hard to read. A simpler no-
tation conveying the same idea is

this: is+;
is: this- & example+;
an: example+;
example: an- & is-;

In both textual representations, the pluses and minuses are used to indicate word-order:
minuses to the left, pluses to the right. This is an additional decoration added to the con-
nectors, needed to indicate and preserve word-order, but not a part of the core definition of
a seed. The ampersand is not symmetric, but enforces order; this is not apparent here, but
is required for the proper definition.

In Link Grammar, the objects to the right of the colon are called “disjuncts”. The name
comes from the idea that they disjoin colocational extractions. After observing a large cor-
pus, one might find that

is: (this- & example+) or (banana- & fruit+) or (apple- & green+);

which indicates that sentences such as “a banana is a kind of fruit” or “this apple is green”
were observed and parsed into (unlabeled) dependencies.

Similar concept: lambda notation. Linguistics literature sometimes describes similar
concepts using a lambda-calculus notation. For example, one can sort-of envision the
expression λM.xyz as a seed with the germ M and with connectors x, y and z. This no-
tation has been used to express the concept of a seed, as described above. For exam-
ple, Poon and Domingos[6] write λyλx.borders(x,y) to represent the attachments of the
word “borders” as a synonym for “is next to”. This is illustrated with the verb-phrase
λyλx.borders(x,y)(Idaho) which beta-reduces to the verb-phrase λx.borders(x, Idaho) to
indicate that x is next to Idaho. The utility of this device becomes apparent because one can
use this same notation to write λyλx.is_next_to(x,y) and λyλx.shares_a_border_with(x,y)
as synonymous phrases. The lambda notation allows x and y to be exposed as connectors,
while at the same time hiding the links that were required to assemble seeds for “next”,
“is”, and “to” into a phrase. That is, λyλx.is_next_to(x,y) is an example of a connected
section, having x and y as the externally exposed connectors and the internal links between
“next”, “is”, and “to” hidden.

The problem with this notation is that, properly speaking, lambda calculus is a system
for generating and working with strings, not with graphs, and lambdas are designed to
perform substitution (beta-reduction), and not for connecting things.

That is, lambda terms are always strings of symbols, and the variables bound by the
lambda are used to perform substitutions. To illustrate the issue, suppose that M above
is axbyczd and suppose that λN.w = ew f . Can these be “connected” together, linked
together like seeds? No: if one tried to “connect” N to z, one has the beta-reduction

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 10

(λM.xyz)λN.w→ λaxbycew f d.xyw. There is no way to express some symmetric version
of this, because (λN.w)λM.xyz→ λeaxbyczd f .xyz which is hardly the same. Now, of
course, lambda calculus has great expressive power, and one could invent a way encoding
graph theory, and/or seeds, in lambda calculus; however, doing so would result in verbose
and complex system. Its easier to work with graphs directly, and just sleep peacefully with
the knowledge that one could encode them with lambdas, if that is what your life depended
on.

Note also that there have been extensions of the ideas of lambda calculus to graphs;
however, those extensions cling to the fundamental concept of beta reduction. Thus, one
works with graphs that have variables in them. Given a variable, one plugs in a graph in
the place of that variable. The OpenCog PutLink works in exactly this way. The beta-
reduction is fundamentally not symmetrical: putting A into B is not the same as putting B
into A. The concept of “connecting” in a symmetric way doesn’t arise.

Similar concept: tensor algebra. The tensor algebra is an important mathematical con-
struct underlying large parts of mathematical analysis, including the theory of vector spaces,
the theory of Hilbert spaces, and, in physics, the theory of quantum mechanics.

FIGURE 0.7. A tensor with three input wires and two output wires

It has been widely noted that tensor algebras have the structure of monoidal categories;
perhaps the most insightful and carefully explained such development is given by Baez and
Stay[4]. The diagram of a tensor shown above is taken from that paper; it is a diagrammatic
representation of a morphism f : X1⊗X2⊗X3 → Y1⊗Y2. There are several interesting
operations one can do with tensors. One of them is the contraction of indexes between two
tensors. For example, to multiply a matrix Mik by a vector vk, one sums over the index
k to obtain another vector: wi = ∑k Mikvk. The matrix Mik should be understood as a 2-
tensor, having two connectors, while vectors are 1-tensors. The intent here is that Mik is
to be literally taken as a seed, with M the germ, and i and k the connectors on the germ.
The vector vk is another seed, with germ v and connector k. The inner product ∑k Mikvk
is a connected section. The multiplication of vectors and matrices is the act of connecting
together connectors to form links: multiplication is linking.

Tensors have additional properties and operations on them, the most important of which,
for analysis, is their linearity. For the purposes here, the linearity is not important, whereas
the ability to contract indexes is. The contraction of indexes, that is, the joining together
of connectors to form links, gives tensor algebras the structure of a monoidal category.
This is a statement that seems simple, and yet carries a lot of depth. As noted above, the
beta-reduction of lambda calculus also looks like the joining together of connectors. This
is not accidental; rather, it is the side effect of the fact that the internal language of closed
monoidal categories is simply typed lambda calculus. The words “simply typed” are meant
to convey that there is only one type. For the above example morphism, that would mean

http://wiki.opencog.org/w/PutLink
https://en.wikipedia.org/w/Tensor_algebra

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 11

that X1 and X2 and so on all have the same type: X1 = X2 = X3 = Y1 = Y2. The end-points
on the seed are NOT labeled; equivalently, they all carry the same label. This is in sharp
contrast to the earlier example

is: this- & example+;

where the two connectors are labeled, and have different types, which sharply limit what
they connect to. The this- connector has the type “this-is”, and can only attach to another
connector having the same type, namely, the is+ connector on “this”

this: is+;

It may seem strange to conflate the concept of tensors and monoidal categories with linguis-
tic analysis, yet this has an rich and old history, briefly touched on in the next section. The
core principle driving this is that the Lambek calculus, underpinning the categorial gram-
mars used in linguistic analysis, can be embedded into a fragment of non-commutative
linear logic. The remaining step is to recall that linear logic is the logic of tensor cate-
gories; the non-commutative aspect is a statement that the left and right products must be
handled distinctly.

Similar concept: Lambek Calculus. The foundations of categorial grammars date back
to Lambek in 1961[7, 8] and the interpretation in terms of tensorial categories proliferates
explosively in modern times. One direct example can be found in works by Kartsaklis[9, 3],
where one can find not only a detailed development of the tensorial approach, together with
its type theory, but also explicit examples, such as the tensor

−−→men⊗built⊗
−−−−→
houses

together with explicit instructions on how to contract this with a different tensor

F
(

αsubj verb obj
)
= εW ⊗1W ⊗ εW

to obtain the “quantization” of the sentence “men built houses”. This notation will not be
explained here; the reader should consult [9] directly for details. The point to be made
is that this kind of tensorial analysis can be, and is done, and often invokes words like
“quantum” and “entanglement” to emphasize the connection to linear logic and to linear
type theory.

Unfortunately, it is usually not clearly stated that it is only a fragment of linear logic
and linear type theory that applies. In linguistics, it is not the linearity that is important,
but rather the conception of frames (in the sense of Kripke frames in proof theory). Frames
have the important property of presenting choices or alternatives: one can have either this,
or one can have that. The property of having alternatives is described by intuitionistic
logic, where the axiom of double-negation is discarded. This either-or choice appears as
the concept of a “multiverse” in quantum mechanics, and far more mundanely as alternative
parses in linguistics.

Another worthwhile example of tensor algebra can be found in equation 13 of [3], re-
produced below:

verb = ∑
i

(−−−−→
sub ject i⊗

−−−→
ob ject i

)
where

−−−−→
sub ject i and

−−−→
ob ject i are meant to be the ith occurrence of a subject/object pair in an

observed corpus. If the corpus consisted of two sentences, “a banana is a kind of fruit” and

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 12

“this apple is green”, then one would write

verb =
(−−−−→

banana⊗−−→f ruit
)
+
(−−−→

apple⊗−−−→green
)

where the verb, in this case, is “is”. The control over the word order, that is, the left-right
placement of the dependencies, is controlled by means of the pregroup grammar. The pre-
group grammar and its compositionality properties follow directly from the properties of
the left-division, right-division and multiplication in the Lambek calculus. A quick mod-
ern mathematical review of the axioms of the Lambek calculus can be found in Pentus[10],
which also provides a proof of equivalence to context-free grammars.

Similar concept: history and Bayesian inference. Some first-principles applications of
Bayesian models to natural language explicitly make use of a sequential order, called the
“history” of a document.[11] That is, the probability of observing the the n-th word of a
sequence is taken to be P(wn|h) where h = wn−1,wn−2, · · · ,w1 is termed the history. This
conception of probability is sharply influenced by the theory of Markov processes and
finite-state machines, dating back to the dawn of information theory.[12] In a finite-state
process model, the future state is predicated only on the current state, and thus the Markov
assumption holds. In deciphering such a process, one might not know how the current state
is correlated to the output symbol, thus leading to the concept of a Hidden Markov Model
(HMM). The concept of “history” is well-suited for such analysis. Several issues, however,
make this approach impractical for many common problems, including natural language.

FIGURE 0.8. The history of a text as a sequence of words

One issue, already noted, is the sequential nature of the process. One can try to hand-
wave away this issue: given a graph of vertices, it is sufficient to write the vertexes in some
order, any order will do. This obscures the fact that n vertexes have n! (n-factorial) possible
interactions: a combinatorial explosion, when the actual data graph may have a much much
smaller number of interactions between vertexes (aka “edges”). By encoding the known
interactions as edges, a graphical approach avoids such a combinatorial explosion from the
outset.

To put it more bluntly: a sequential history model of genomic and proteomic data is
inappropriate. Although base pairs and amino acids come in sequences, the interactions
between different genes and proteins are not in any way shape or form sequential. The
interactions are happening in parallel, in distinct, different physical locations in a cell.
These interactions can be depicted as a graph. Curiously, that graph can resemble the one
depicted below, although the depiction is meant to show something different: it is meant to
show a history.

Figure 0.9 depicts the lattice of a Viterbi parse of a Markov chain. The dashed green
line depicts a maximum-likelihood path through the lattice, that is, the most likely history.
Viterbi decoding, using an “error correcting code”, is a process by which the validity of the
dashed red path is checked, and failing paths discarded. For natural language, the dashed
red path must be a grammatically correct sequence of words. For a radio receiver, the
dashed red path must be a sequence of bits that obey some error-correction polynomial; if
it doesn’t, the next-most-likely path is selected.

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 13

FIGURE 0.9. A Viterbi parse lattice of a Markov chain

Each black line represents a probability pi j of moving from state i to state j at the next
time-step. That is, pi j = P(wn = j|wn−1 = i) is the likelihood of word j given word i in
the immediate past. The probabilities are arranged such that ∑i pi j = 1. This is called a
Markov model, because only the most recent state transitions are depicted: there are no
edges connecting the nodes more than one time-step apart; there are no edges connecting
wn to wn−2, etc. Put differently, P(wn|h) = P(wn|wn−1). That is, this depicts the use of
2-grams to predict the current state.

Non-Markov models would have edges connecting nodes further in the past. A n-gram
approach to language digs n steps into the past. If there are k states, and n steps into the
past, then kn edges are required: that is, a rank-n tensor. Here, k = 4 and n = 2 is depicted;
in natural language k is the number of words (say, k = 104 for a common subset of the
English language), while n is the length of a longer sentence, say n = 12. In this case, the
history tensor P(wn|h) has kn = 1048 = 2160 edges. But of course, this is computationally
absurd. It is also theoretically absurd: almost all of those edges have zero probability.
Almost none of the edges are needed; the actual tensor is very very sparse.

The red path in the figure below indicates a very unlikely word-sequence: “example this
an this”. There are 4×16 = 64 paths through it. Of these, only 3 are plausible: the green
edges, and the sequences “this example is an” and “an example is this”. The others can’t
be observed.

FIGURE 0.10. Likely and unlikely word sequences

The sparsity is easily exposed with dependency parsing. So, for example, if wn−3 = this
and wn−2 = is and wn−1 = an, a dependency parse will tell you that wn must be a singular
noun starting with a vowel, or an adjective starting with a vowel. It also tells you that, for
this particular history, this noun can depend only on wn−2 and on wn−1 but not on wn−3. A
collection of dependency parses obtained from a corpus identifies which edges matter, and
which edges do not.

Dependency parses do even more: they unveil possible paths, and not just pair-wise
edges. They provide a more holistic view of what might be going on in natural language.
That is, the notation

is =
(−−−−→

banana⊗−−→f ruit
)
+
(−−−→

apple⊗−−−→green
)

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 14

and

is: (banana- & fruit+) or (apple- & green+);

and

P(wn = f ruit|wn−1 = is,wn−2 = banana)+P(wn = green|wn−1 = is,wn−2 = apple)

all represent the same knowledge, the dependency notation appears to be less awkward than
thinking about history as some Bayesian probability. The dependency notation focuses
attention on a different part of the problem.

Another popular way to at least partly deal with the sparsity of the history tensor
P(wn|h) is to use skip-grams. The idea recognizes that many of the edges of an n-gram
will be zero, and so these edges can be skipped. This is not a bad approach, except that
it is “simply typed”: it does not leverage the possibility that different words might have
different types (verb, noun, ...) and that this typing information delivers further constraints
on the structure of the skip-gram. That is, the notion of subj-verb-obj not only tells you
that your skip-gram is effectively a 3-gram, but also that the first and third words belong to
a class called “noun”, and the middle is a transitive verb. This sharply prunes the number
of possibilities before the learning algorithm is launched, instead of during or after. The
fact that such pruning is even possible is obscured by the notation and language of n-grams
and the history P(wn|h).

A different stumbling block of the “history” approach is that it ignores “the future”:
the fact that the words that might be said next have already influenced the choice of the
words already spoken. This can be hand-waved away by stating that the history is creating
a model of (hidden) mental states, and that this model already incorporates those, and thus
is anticipating future speech actions. Although this might be philosophically acceptable
to some degree, it again forces complexity onto the problem, when the complexity is not
needed. If you’ve already got the document, look at all of it; go all the way to the end of
the sentence. Don’t arbitrarily divide it into past and future, and discard the future.

To summarize: dependency structures appear naturally; flattening them into sequences
places one at a notional, computational and conceptual disadvantage, even if the flattening
is conceptually isomorphic to the original problem. The tensor P(wn|h) may indeed encode
all possible knowledge about the text in a rigorously Bayesian fashion; but its unwieldy.

QUOTIENTING

The intended interpretation for the graphs discussed in this document is that they repre-
sent or are the result of capturing a large amount of collected raw data. From this data, one
wants to extract commonalities and recurring patterns.

The core assumption being made in this section is that, when two local neighborhoods
of a graph are similar or identical, then this reflects some important similarity in the raw
data. That is, similarity of subgraphs is the be-all and end-all of extracting knowledge from
the larger graph, and that the primary goal is to search for, mine, such similar subgraphs.

Exactly what it means to be “similar” is not defined here; this is up to the user. Simi-
larity could mean subgraph isomorphism, or subgraph homomorphism, or something else:
some sort of “close-enough” similarity property involving the shape of the graph, the con-
nections made, the colors, directions, labels and weights on the vertexes or edges. The

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 15

precise details do not matter. However, it is assumed that the user can provide some algo-
rithm for finding such similarities, and that the similarities can be understood as a kind-of
“equivalence relation”.

Example of similarity. To motivate this, consider the following scenario. One has a large
graph, some dense mesh, and one decides, via some external decision process, that two
vertexes are similar. One particularly good reason to think that they are similar is that
they share a lot of nearest neighbors. In a social graph, one might say they have a lot of
friends in common. In genomic or proteomic data, they may interact with the same kinds of
genes/proteins. In natural language, they might be words that are synonyms, and thus get
used the same way across many different sentences; specifically, the syntactic dependency
parse links these words to the same set of heads and dependents. At any rate, one has a
large graph, and some sort of equivalence operation that can decide if two vertexes are the
“same”, or are “similar enough”. Whenever one has an equivalence relation, one can apply
it to obtain a quotient, of grouping together into an identity all things that are the same.

To make this even more concrete, consider this example from linguistics. Suppose,
given a corpus, one has observed three sentences: “Mary walked home”, “Mary ran home”
and “Mary drove home”. A dependency parse provides three seeds:

walked: Mary- & home+;
ran: Mary- & home+;
drove: Mary- & home+;

which seem to be begging for an equivalence relation that will reduce these to

walked ran drove: Mary- & home+;

Using a tensorial notation, once starts with
−−−→
Mary⊗walked⊗

−−−→
home+

−−−→
Mary⊗ ran⊗

−−−→
home+

−−−→
Mary⊗drove⊗

−−−→
home

and applies the equivalence relation to obtain

−−−→
Mary⊗

(
walked + ran+drove

)
⊗
−−−→
home

The structure here strongly resembles the application of the distributive law of multiplica-
tion over addition. This distributivity property is one of the appeals of the tensor notation.
One can obtain a similar sense of distributivity by using the operator “or” to separate the
Link Grammar style stanzas, and note that the change also appears to be an application of
the distributive law of conjunction over disjunction.

This is illustrated pictorially, in figure 0.11.
It need not be the case that an equivalence relation is staring us in the face, yet here, it

is. The vertexes “walked”, “ran” and “drove” can be considered similar, precisely because
they have the same neighbors. The upper graph can be simplified by computing a quotient,
shown in the lower part: the quotient merges these three similar vertexes into one. The
result is not only a simpler graph, but also some vague sense that “walked”, “ran” and
“drove” are synonymous in some way.

Quotienting. If one has an equivalence relation that can be applied to a graph, then the
obvious urge is to attempt to perform quotienting on the graph. That is, to create a new
graph, where the “equal” parts are merged into one.

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 16

FIGURE 0.11. Creating a quotient graph

The first issue to be cleared out of the way is the use of the word “quotienting”, which
seems awkward, since the example above seemed to involve some sort of factoring, or
the application of a distributive law of some sort. The terminology comes from modulo
arithmetic, and is in wide use in all branches of mathematics. A simple example is the idea
of dividing by three: given the set of integers Z, one partitions it into three sets: the set
{0,3,6,9, · · ·}, the set {1,4,7, · · ·} and the set {2,5,8, · · ·}. These three sets are termed the
cosets of 0, 1 and 2, and all elements in each set are considered to be equal, in the sense that,
for any m and n in any one of these sets, it is always true that m = n mod 3: they are equal,
modulo 3. In this way, one obtains the quotient set Z3 = Z/3Z = Z/ mod 3 = {0,1,2}.
Modulo arithmetic resembles division, ergo the term “quotient”.

Given a set S and an equivalence relation ∼, it is common to write the quotient set as
Q = S/∼. In the above, S was Z and ∼ was mod 3. In general, one looks for, and works
with equivalence relations that preserve desirable algebraic properties of the set, while
removing undesirable or pointless distinctions. In the modulo arithmetic example, addition
is preserved: it is well defined, and works as expected. In the linguistic example, the subj-
verb-obj structure of the sentence is preserved; the quotienting removes the “pointless”
distinction between different verbs.

Quotienting is often described in terms of homomorphisms, functions π : S→ Q that
preserve the algebraic operations on S. For example, if m : S×S×S→ S is a three-argument
endomorphism on S, one expects that π preserves it: that π (m(a,b,c))=m(π (a) ,π (b) ,π (c)).
For the previous example, if m was used to provide or identify a subj-verb-obj relationship,
then, after quotienting, one expects that m can still identify the verb-slot correctly.

Graph quotients. In graph theory, the notion of quotienting is often referred to as work-
ing “relative to a subgraph”. Given a graph G and a subgraph A⊂ G, one “draws a dotted
line” or places a balloon around the vertexes and edges in A, but preserves all of the edges
coming out of A and going into G. The internal structure of A is then ignored. The equiv-
alence relation makes all elements of A equivalent, so that A behaves as if it were a single
vertex, with assorted edges attached to it, running from A to the rest of G.

Stalks. Given the above notion of a graph quotient, it can be brought over to the language
of seeds and sections, established earlier. Let G be a graph, and let va and vb be two

https://en.wikipedia.org/wiki/Quotient

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 17

vertexes in the graph, with corresponding seeds sa and sb extracted from the graph. That
is, s = (v,Cv) with Cv being the set of edges connecting v to all of its nearest neighbors.
Let π be a projection function, such that π (va) = π (vb). That is, π : V → B is a map from
the vertices V of G to some other set B.

It is not hard to see that π is a morphism of graphs; it not only maps vertexes, but it can
be extended to map edges as well. The target of π is a graph quotient.

Definition. Given a map π : V → B, the STALK above b ∈ B is the set S of seeds such that
for each s = (v,Cv) ∈ S, one has that π(v) = b. �

FIGURE 0.12. A stalk and it’s projection

In general, this definition does not require that the map π : V → B be a total map; that is,
it does not need to be defined on all of V . Also, V does not need to be the vertexes of some
specific graph; it is enough that V is a set of germs of seeds. That is, the seeds in the stalk
can be generalized seeds, having typed connectors, rather than connectors derived from
edges. The vertexes in the stalk can be visualized as being stacked one on top another,
forming a tower or a fiber, with the edges sticking out as spines. When the seeds carry
typed connectors, the stalk can be visualized as a tower of jigsaw-puzzle pieces.

FIGURE 0.13. A corn stalk, a stack of puzzle pieces

Note that the projection of a stalk is a seed. It’s germ is b, and if any connector appears
in the stalk, then it also appears as a connector on b in the base. At least, this is the

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 18

unassailable conclusion if one starts with a graph, and assumes that π is a graph morphism.
It will prove to be very useful to loosen this restriction, that is, to allow π to add or remove
connectors. Thus, it is useful to immediately broaden the definition of the stalk.

Definition. Given a map π : E→ B, where both E and B are collections seeds, the STALK
above b ∈ B is the set S of seeds in E such that for each s = (v,Cv) ∈ S, one has that
π(s) = b. �

In this revised definition, there is no hint of what π did with the connectors. In particular,
there is no way to ask about some specific connector on some seed s, and what happened
to it after π mapped s to b. This definition is perhaps too general; in the most common
case, it is useful to project the connectors as well as the germs. It is also very useful to be
able to say that a particular connector on s can be mapped to a particular connector on b.
Yet it is also useful to sometimes discard some connectors because they are infrequently
used, to perform pruning, as it were. These use-cases will be returned to later. There is no
particular reason to allow pruning during projection; it can always be done before, or after.

Thus, perhaps the most agreeable definition for a stalk is this.

Definition. Given a map π : E→ B, where both E and B are collections seeds, the STALK
above b ∈ B is the set S of seeds in E such that for each s = (v,Cv) ∈ S, one has that
π(s) = b. The map π can be decomposed into a pair π = (πg,πc) such that, for every
γ ∈ Cv one has that π (v,γ) = (πg (v) ,πc (γ)) such that πc (γ) ∈ Cb. That is, πg maps the
germs of E to the germs of B and πc maps the connectors in E to specific connectors in B.
�

The next figure illustrates both the projection of germs, and of connectors. It tries to
capture the notion that the projection is entire and consistently defined.

FIGURE 0.14. Germs and connectors project consistently

The definition of a link needs to be generalized, and made consistent with this final
definition of a stalk.

Definition. Two stalks S1 and S2 are CONNECTED if there exists a link between some seed
s1 ∈ S1 and some seed s2 ∈ S2. The stalks are CONSISTENTLY LINKED if the projections
of the stalks are also linked in a fashion consistent with the projection. That is, if (v1, ta)
is the connector on s1 that is connected to the connector (v2, tb) on s2, viz. v2 ∈ ta and
v1 ∈ tb, then (πg (v1) ,πc (ta)) is connected to (πg (v1) ,πc (ta)) . That is, πg (v2) ∈ πc (ta)
and πg (v1) ∈ πc (tb) .�

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 19

Recall that the original definition of a connector was such that it could be used once
and only once. This can become an issue, if it is strictly enforced on the base space. It
will become convenient to remove this restriction on the base space, and replace it by a
use-count. That is, if two different links between stalks project down to the same link in
the base space, then the link in the base-space should be counted “with multiplicity”. This
induces the notion that maybe the base space can be used for statistics-gathering, and that
is exactly the intent.

SHEAVES

The stalk is meant to provide a framework with which to solve the computational in-
tractability problems associated with Bayesian networks, by explicitly exposing the gram-
matical structure within them in such a fashion that they can be explicitly manipulated.
The intent is to accomplish the hope expressed in the diagram below. To actually arrive
at a workable solution requires additional clarifications, examples, and definitions. This
hopeful figure must not be taken literally: one certainly does not want the base space to
be some Markov network! That would be a disaster. Rather, the hope is to accumulate a
large number of graph fragments in such a way that the fragments are apparent, but that the
statistics of their collective behavior is also accessible. The hope is that this can be done
without overflowing available CPU and RAM, while carefully maintaining fidelity to the
graph fragments. This is an example from linguistics, but one might hope to do the same
with activation pathways in cell biochemistry. The citric acid cycle should be amenable to
such a treatment, as well.

FIGURE 0.15. The problem, and it’s intended solution

From the previous development, it should be clear that stalks capture the local structure
of graphs, and that the projection, carefully done, can preserve the essence of that local
structure. Enough mechanism has been developed to allow the definition of a section to
be understood in a way that is in keeping with the usual notion of a section as commonly
defined in covering spaces and fiber bundles. A preliminary, provisional definition of a
sheaf can now be given.

Definition. A sheaf is a collection of connected sections, together with a projection func-
tion π that can be taken to be an equivalence relation. That is, π maps sections to a base
space B, such that, for each pair of vertexes v,w occurring in different sections, one has
π(v) = π(w) if and only if v,w are in germs in the same stalk. �

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 20

This provisional definition can be tightened. The formal definition of a sheaf also re-
quires that it obey a set of axioms, called the gluing axioms. Before giving these, it is
useful to look at an example.

Example: collocations. A canonical first step in corpus linguistics is to align text around
a shared word or phrase:

fly like a butterfly
airplanes that fly

fly fishing
fly away home
fly ash in concrete

when sparks fly
let’s fly a kite

learn to fly helicopters

Each word is meant to be a vertex; edges are assumed to connect the vertexes together
in some way. In standard corpus linguistics, the edges are always taken to join together
neighboring words, in sequential fashion. Note that each phrase in the collocation obeys the
formal definition of a section, given above. It does so trivially: its just a linear sequence of
vertexes connected with edges. If the collocated phrases are chopped up so that they form
a word-sequence that is exactly n words long, then one calls that sequence an n-gram.

The projection function π is now also equally plain: it simply maps all of the distinct
occurrences of the word “fly” down to a single, generic word “fly”. The stalk is just the
vertical arrangement of the word “fly”, one above another. Each phrase or section can
be visualized as a botanical branch or botanical leaf branching off the central stalk.The
projection of all of the stalks obtained from collocation is shown below, in figure 0.16.
Identical words are projected down to a common base point. Links between words are
projected down to links in the base space. For ordinary n-grams, the links are merely the
direct sequential linking of neighboring words. The figure depicts the base-space of the
sheaf obtained from n-grams.

FIGURE 0.16. N-gram corpus text alignment

The sections do not have to be linear sequences; the phrases can be parsed with a de-
pendency parser of one style or another, in which case the words are joined with edges that
denote dependencies. The edges might be directed, and they might be labeled. Parsing
with a head-phrase parser introduces additional vertexes, typically called NP, VP, S and so
on. The next figure (figure 0.17) shows the projection that results from alignment on an

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 21

(unlabeled, undirected) dependency parse of the text. As before, each stalk is projected
down to a single word, and the links are projected down as well. The most noticeable dif-
ference between this base space and the N-gram base space is that the determiner “a” does
not link to “fly” even though it stands next to it; instead, the determiner links to the noun
it determines. This figure also shows “ash” as modifying “fly”, which, as a dependency, is
not exactly correct but does serve to illustrate how the N-gram and the dependency align-
ments differ. If the dependency parse produced directed edges with labels, it would be
prudent to project those labels as well.

FIGURE 0.17. Dependency parse corpus text alignment

Both of the figures 0.16 and 0.17 depict a quotient graph that results from a corpus
alignment, where all uses of a word have been collapsed (projected down) to a single
node, and all links connecting the words are likewise projected. The resulting graph can
be understood to depict all possible connections in a natural language. In some sense, it
captures important structural information in natural language.

Be careful, though: these base spaces are just the projections of the sheaf; they are not
the sheaf itself. Its as if a flashlight were held above the stalks: the base space is the shadow
that is cast. The sheaf is the full structure, the base space is just the shadow.

Are projections useful? Yes. A collapsed graph like those above might appear strange;
why would one want to do that, if one has individual sentence data?

By collapsing in this way, one obtains a natural place to store marginal distributions.
For example, when accumulating statistics for large collections of sentences, the projected
vertex becomes an ideal place to store the frequency count of that word; the projected edge
becomes an excellent place to store the joint probability or the mutual information for a pair
of words. The projected graph - the quotient graph, is manageable in size. For example,
in a corpus consisting of ten million sentences, one might see 130K distinct, unique words
(130K vertexes) and perhaps 5 million distinct word-pairs (5M edges). Such a graph is
manageable, and can fit into the RAM of a contemporary computer.

By contrast, storing the individual parses for 10 million sentences is more challenging.
Assuming 15 words per sentence, this requires storing 150M vertexes, and approximately
20 links per sentence for 200M edges. This graph is two orders of magnitude larger than
the quotient graph. One could, of course, apply various programming and coding tricks to
squeeze and compress the data, but this misses the point: It makes sense to project sections
down to the base space as soon as possible. The original sections can be envisioned to still
be there, virtually, in principle, but the actual storage can be avoided.

https://en.wikipedia.org/wiki/Marginal_distribution

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 22

FIGURE 0.18. A Sheaf of Stalks; a Sheaf of Paper

Every graph can be represented as an adjacency matrix. In this example, it would be
a sparse matrix, with 5 million non-zero entries out of 130K×130K total. The sparsity is
considerable: log2 (130×130/5) = 11.7. Less than one in a thousand of all possible edges
are actually observed.

The marginals stored with the graph can be accessed as marginals on the adjacency
matrix. That is, they are marginals in the ordinary sense of values written in the margin
of the matrix. Standard linear-algebra and data-analysis tools, such as the R programming
language, can access the matrix and the marginals.

Visualizing Sheaves. One way of visualizing the sheaf is as a stack of sheets of paper,
with one sentence written on each sheet. The papers are stacked in such a way that words
that are the same are always arranged vertically one above another. This stacking is where
the term “sheaf” comes from. Each single sheet of paper is a section. Each collocation is
a stalk.

A different example can be taken from biochemistry. There, one might want to write
down specific pathways or interaction networks on the individual sheets of paper, treating
them as sections. If one specific gene is up-regulated, one can then try to view everything
else that changed as belonging to the same section, as if it were an activation mode within
the global network graph of all possible interactions. Thus, for example, the Krebs cycle
can be taken to be a single section through the network: it shows exactly which coenzymes
are active in aerobic metabolism. The same substrates, products and enzymes may also
participate in other pathways; those other pathways should be considered as other sections
through the sheaf. Each substrate, enzyme or product is itself a stalk. Each reaction type is
a seed.

The sheaf, it’s decomposition into sections, and it’s projection down to a single unified
base network, provides a holistic view of a network of interactions. For linguistic data,
activations or modes of the network correspond to grammatically valid sentences. For
biological data, an activated biological pathway is a section. The base space provides a
general map of biochemical interactions; it does not capture individual activations. The
individual sections in the sheaf do capture that activation.

Feature Vectors. It is important to understand that, in many ways, stalks can be treated
as vectors, and, specifically as the “feature vectors” of data-mining. This is best illustrated
with an example.

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 23

Consider the corpus “the dog chased the cat”, “the cat chased the mouse”, “the dog
chased the squirrel”, “the dog killed the chicken”, “the cat killed the mouse”, “the cat
chased the cockroach”. There are multiple stalks, here, but the ones of interest are the one
for the dog:

the dog chased the cat
the dog chased the squirrel
the dog killed the chicken

and the stalk for the cat:

the dog chased the cat
the cat chased the mouse
the cat killed the mouse
the cat chased the cockroach

One old approach to data mining is to trim these down to 3-grams, and then compare
them as feature vectors. These 3-gram feature vector for the dog is:

the dog chased ; 2 observations
the dog killed ; 1 observation

and the 3-gram stalk for the cat is:

chased the cat ; 1 observation
the cat chased ; 2 observations
the cat killed ; 1 observation

These are now explicitly vectors, as the addition of the observation count makes them
so. The vertical alignment reminds us that they are also still stalks, and that the vector
comes from collocations.

Recall how a vector is defined. One writes a vector ~v as a sum over basis elements êi
with (usually real-number) coefficients ai:

~v = ∑
i

aiêi

The basis elements êi are unit-length vectors. Another common notation is the bra-ket
notation, which says the same thing, but in a different way:

~v = ∑
i

ai |i〉

The bra-ket notation is slightly easier to use for this example. The above 3-gram colloca-
tions can be written as vectors. The one for dog would be

−→
dog = 2 |the ∗ chased〉+ |the ∗ killed〉

while the one for cat would be

−→cat = |chased the ∗〉+2 |the ∗ chased〉+ |the ∗ killed〉

The ∗ here is the wild-card; it indicates where “dog” and “cat” should go, but it also
indicates how the basis vectors should be treated: the wild-card helps establish that dogs
and cats are similar. It allows the basis vectors to be explicitly compared to one-another.
The ability to compare these allows the dot product to be taken.

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 24

Recall the definition of a dot-product (the inner product). For ~v as above, and ~w =

∑i biêi, one has that

~v ·~w = ∑
i

∑
j

aib j êi · ê j = ∑
i

∑
j

aib jδi j = ∑
i

aibi

where the Kronecker delta was used in the middle term:

êi · ê j = δi j =

{
1 if i = j
0 if i 6= j

Thus, the inner product of −→cat and
−→
dog can be computed:

−→cat ·
−→
dog = 0 ·1+2 ·2+1 ·1 = 5

One common way to express the similarity of −→cat and
−→
dog is to compute the cosine simi-

larity. The angle θ between two vectors is given by

cosθ =~v ·~w/ |~v| |~w|

where |~v|=
√

∑i a2
i is the length of~v. Since

∣∣−→cat
∣∣=√6 and

∣∣∣−→dog
∣∣∣=√5 one finds that

cosθ =
5√
30
≈ 0.913

That is, dogs and cats really are similar.
If one was working with a dependency parse, as opposed to 3-grams, and if one used the

Frobenius algebra notation such as that used by Kartsaklis in [3], then one would write the
basis elements as a peculiar kind of tensor, and one might arrive at an expression roughly
of the form

dog = 2
(←−

the⊗
−−−−→
chased

)
+1
(←−

the⊗
−−−→
killed

)
and

cat =
(←−−−−

chased⊗
←−
the
)
+2
(←−

the⊗
−−−−→
chased

)
+1
(←−

the⊗
−−−→
killed

)
Ignoring the differences in notation (ignoring that the quantities in parenthesis are tensors),
one clearly can see that these are still feature vectors. Focusing on the vector aspect only,
these represent the same information as the 3-gram feature vectors. They’re the same thing.
The dot products are the same, the vectors are the same. The difference between them is
that the bra-ket notation was used for the 3-grams, while the tensor notation was used for
the dependency parse. The feature vectors can also be written using the link-grammar-
inspired notation:

dog: [the- & chased+]2 or [the- & killed+]1;
cat: [chased- & the-]1 or [the- & chased+]2 or [the- & killed+]1;

The notation is different, but the meaning is the same. The above gives two feature vectors,
one for dog, and one for cat. They happen to look identical to the 3-gram feature vectors
because this example was carefully arranged to allow this. In general, dependency parses
and 3-grams are going to be quite different; for these short phrases, they happen to super-
ficially look the same. In any of these cases, and in any of these notations, the concept of
feature vectors remain the same.

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 25

FIGURE 0.19. Corn field; stalk field

Stalk fields and vector fields. The figures 0.16 and 0.17 illustrate the base space. Above
each point in the base space, one can, if one wishes, plant a stalk.

Such a plantation is not a sheaf; or rather it could be, but it is not one with large sections.
The stalk field only has individuals seeds up and down each stalk; the stalks are not linked
to one-another. In the general case, illustrated in figure 0.20, the stalks are linked to one-
another; the sections really do start to resemble sheets of paper stacked one on top another.

FIGURE 0.20. Sheafs have big sections, in general

The general sheaf, as depicted here, holds much more data than just the base space.
It holds the data showing where the base space came from: how the base space was a
projection of sections. Holding such a large amount of data might be impractical: in the
previous example, holding the parse data for 10 million individual, distinct sentences might
be a challenge. The stalk field is meant to be a half-way point: it can hold more information
than the base alone, but still be computationally manageable. For example, the sme dataset
discussed previously, containing 10 million sentences composed of 130K words has been
found to contain 6 million seeds; these are observed on average of 2.5 times each, although
the distribution is roughly Zipfian: a few are observed hundreds of thousands of times, and
more than a third are observed only once.

A particular appeal of the stalk field is that each stalk can be re-interpreted as a vector.
For each point of the base space, one just attaches a single vector. There is no additional
structure, and all this talk of stalks can be brushed away as just a layer of theoretical
complexity: in the end, its just per-base-point feature vectors.

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 26

The power of the stalk representation is to keep in mind that the basis elements are
not just vacuous items, but are in fact jigsaw-puzzle pieces that can be connected to one-
another. Again, each stalk can be viewed as a stack of jigsaw-puzzle pieces.

If there is a vector at each point, can the sheaf, as described here, be thought of as a
fiber bundle? Maybe, but that is not the intent. In a fiber bundle, each fiber is isomorphic
to every other. Thus, locally, a fiber bundle always looks like the produce space U ×F
with U ⊆ B and F the fiber. Fiber bundles are interesting when they are glued together in
non-trivial ways, globally. Here, there’s a different set of concerns: its the local structure
that is interesting, and not so much the global structure. Also, there has been no attempt
to make each stalk (or stalk-space) isomorphic to every other. If each stalk is a vector in a
vector space, one could, in principle, force that vector space to be the same, everywhere.
This does not buy much: in the practical case, the support for any given vector is extremely
sparse.

In some cases, it is natural to have different stalks be incomparable. In biology, some
stalks may correspond to enzymes, others to RNA, others to DNA. In some vague philo-
sophical sense, it could be argued that these are “all the same”: examples of molecules.
In practice, forcing such unification seems to be a loosing proposition. The goal of the
technology here is to detect, observe and model fine details of structure, and not to mash
everything into one bag.

Presheaves. The formal definition of a sheaf entails a presentation of the so-called “gluing
axioms”. These are technical requirements that ensure that the stalks can be linked, and
sections projected in a “common sense” kind of fashion. For example, if a section contains
a sentence, one expects that the sentence is grammatical. One also expects to be able
to extract phrases out of it. Gluing sentences together, one expects to arrive at coherent
paragraphs. In a biochemical setting, one expects that all of the individual reactions in
a pathway fit together. One expects to be able to talk about subsets of the full pathway
without obtaining nonsense. This is just common sense.

Unfortunately, “common sense” being a commodity in short supply, the gluing axioms
must be written in detail. Before this can be done, the axioms for a presheaf must be
reviewed. There are several. Rather than presenting these as axioms, they are presented
below as “claims”. It is up to the reader to verify that the structures defined earlier satisfy
these claims. This is done for several reasons. First, such proofs are a bit tedious, and
would be out of place in this otherwise rather informal treatment of the topic. Second, the
overall informality of this document gives little support for weighty proofs. Third, most of
these claims should be fairly self-evident, upon a bit of exploration. Finally, many choices
were left to the reader: should edges be directed? Are they labeled? Do vertexes carry
additional markings or values? Each choice of labeling and marking potentially affects the
verification of these claims. Thus, the below are presented as “claims”, living in limbo
between axioms and theorems.

First, a definition.

Definition. An OPEN SUBGRAPH U of a graph G is defined to be a section of G. �

This definition helps avoid what would otherwise be confusing terminology. The open
subgraphs below will always be subgraphs of the base space B. The open subgraphs are
created by taking scissors and cutting edges in the graph, but leaving the cut half-edges
attached, as they were originally. That is, the cut edges are converted into connectors.
By leaving these connectors in place, much of the information needed to glue them back

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 27

together remains intact. It is up to the reader to convince themselves that these open sub-
graphs behave essentially the same way as open sets in a topological space do: one can
take intersections and unions, and doing so still results in an open subgraph. One can even
build a Borel algebra out of them, but his will not be needed.

The presheaf is defined in terms of a functor and it’s properties.

Claim. There exists a functor F such that, for each open subgraph U of the base graph B,
there exists some collection F(U) of sections above U . �

Next, the restriction morphism, which cuts down or restricts this collection.

Claim. For each open subgraph V ⊆U there is a morphism resV,U : F (U)→ F (V). �

Since V is smaller, we expect F (V)to be smaller, also. The restriction morphism trims
away the unwanted parts. The trimming needs to stay faithful, to preserve the structure.
Thus

Claim. For every open subgraph U of the base graph B, the restriction morphism resU,U :
F (U)→ F (U) is the identity on F (U). �

The restrictions must compose in a natural way, as well, so that if one trims a bit, then
trims a bit more, its the same as doing it all at once.

Claim. For a sequence of open subgraphs W ⊆ V ⊆U , the restrictions compose so that
resW,V ◦ resV,U = resW,U . �

If a system obeys the above, it is technically called a PRESHEAF. A presheaf is much
like the (informal) definition given for a sheaf, above. However, it is possible to create
structures that satisfy the above claims (axioms), but don’t quite match the intended defini-
tion of a sheaf. In particular, the above are not enough to guarantee that the sections in the
presheaf can be organized properly into stalks. To get well-behaved stalks, more is needed.
These are the gluing axioms.

Gluing axioms. The open subgraphs behave much like open sets. Thus, the concept of
an open covering can be imported in a straight-forward way. A collection {Ui} of open
subgraphs is an open cover for an open subgraph U if the union of all the Ui contain U .
That is, they are an open cover if U ⊆

⋃
i Ui. The union of open subgraphs is meant to be

“obvious”: join together the connectors, where possible.
A presheaf is a sheaf if it obeys the following two claims/axioms.

Claim. (Locality) If {Ui} is an open cover for U , and if s, t ∈ F (U) are sections such that
s|Ui = t|Ui for each Ui, then s = t. �

In the above, the notation s|V denotes the restriction of the section s to the open subgraph
V of the base spaceB. Pictorially, s|V is that part of the section that sits on the stalks above
V . It is a trimming-down of s so that it projects cleanly down to V and to nothing larger. If
each Ui is a seed in the base space, then s|Ui is a seed in the stalk above Ui. Note that s|Ui

might be the empty set. The locality axiom is basically saying “stalks exist”. Alternately,
the locality axiom says that if you cut up a layer-cake, you can still tell, after the cutting,
which layer was which.

The gluing axiom is needed to reassemble the pieces.

Claim. (Gluing) If {Ui} is an open cover for U , and if si ∈ F (Ui) are sections restricted to
each Ui, and if, for all pairs i, j the si and s j agree on overlaps, then there exists a section
s ∈ F (U) such that si = s|Ui . �

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 28

In the above, the phrase “si and s j agree on overlaps” means that si|Ui∩U j = s j|Ui∩U j .
Note that Ui ∩U j might be the empty set, in which case no agreement is needed. The
gluing axioms states, more or less, that if the layer cake is cut into pieces, and the pieces
can be reassembled with the edges lining up correctly, then the original layers can be re-
discovered.

Gluing is perhaps not as trivial as it sounds. It will be seen later on that gluing is
essentially the same thing as parsing. Obtaining a successful parse is the same thing as
obtained a valid section. In the case of natural language, a parse succeeds if and only if a
sentence is grammatically valid. But of course! the sections of a natural language sheaf
are exactly the grammatical sentences.

Until this more detailed presentation of parsing is described, one can imagine the fol-
lowing scenario. If seeds correspond to jigsaw-puzzle pieces, then the sections si corre-
spond to partially-assembled parts of the jigsaw. Two such parts si and s j agree on overlaps
if Ui ∩U j is non-empty, and these two parts can be joined together. If the connectors are
typed, then there may be multiple distinct connectors that can be joined to one-another.
They just might fit. That is, there might be more than one way to make si and s j connect,
possibly by shifting, turning, the pieces, etc. If one then tried to connect sk, there might be
multiple ways of doing this, leading to a combinatorial explosion. At some point in this
process, one might discover that there is simply no way at all to connect the next piece: it
just won’t fit. One then has to back-track, and try a different arrangement. Obtaining an
efficient algorithm to perform this back-tracking is non-trivial: such algorithms are called
parsers, and gluing is parsing.

Does this really work? The sheaf axioms presented above are standardized and are pre-
sented in many books. See, for example, Eisenbud & Harris[13] or Mac Lane & Moerdijk[14].
The point of the above is to convince the reader that the structures being described really
are sheaves, in the formal sense of the word. There’s a big difference though: everything
above was developed from the point of view of graphs, and that really does change the
nature of the game. That said, the reason that all of this machinery “works” is because the
open subgraphs really do behave very much like open sets. Because of this, many concepts
from topology extend naturally to the current structures.

This is not exactly a new realization. The “open subgraphs” defined here essentially
form a Grothendieck topology, and the thing that is being called a “sheaf” should probably
be more accurately called a “site”. Developing and articulating this further is left for a
rainy day.

It is worth noting at this point that the normal notion of a “germ” in sheaf theory corre-
sponds to what is called a “seed”, here. I suppose that the vocabulary used here could be
changed, but I do like thinking of seeds as sticky burrs. The biological germ of a seed is
that thing left, when the outer casing is removed.

The use of the jigsaw-puzzle piece analogy to define connectors is strongly analogous
to the construction of the Čech nerve. This can be thought of as a way of inducing overlaps
from fiber products. This point is returned to, later on.

Cohomology. In orthodox mathematics, the only reason that sheaves are introduced is to
promptly usher the reader to Čech cohomology in the next chapter of any book on algebraic
topology. That won’t be done here, so what’s the point of all this?

Well, this won’t be done here mostly because I’m running out of space, and, in the
context of biology and linguistics, this is uncharted territory. But some comments are in
order. First, if the point of this was merely to get at graph theory, there would not be much

https://en.wikipedia.org/wiki/Grothendieck_topology
https://en.wikipedia.org/wiki/Nerve_of_a_covering

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 29

to say. For example, the homotopy theory of graphs is more-or-less boring: every graph
is homotopic to a bouquet of circles. Homotopy and homology on graphs only becomes
interesting if one can add 2-cells and n-cells for n > 1; then one gets cellular homology.
Can that ever happen here?

If one considers biochemistry, and use the Krebs cycle (the citric acid cycle) as an
example, then the answer is yes. This is a loop; it’s essentially exothermic, or a kind of
pump, in that the loop always goes around in one direction. The edges are directional. Its a
cycle not only in a biological sense, but also in th mathematical sense: it can be considered
to be the boundary of a 2-cell. The Krebs cycle is not the only cycle in biochemistry, and
many of these cycles share common edges. In essence, there’s a whole bunch of 2-cells in
biochemistry, and they’re all tangent to one-another. That is, there are chain complexes in
biochemistry. What’s their homology? Are there 3-cells in biochemistry? I suspect that
this question has not been asked before, or that its answer is unknown. Perhaps this is not
a surprise; we have not had the tools to “solve biochemistry” before.

What about linguistics? Examples here seem to be more forced. Yes, dependencies can
be directional. Dependency trees are trees, however. One can allow loops in them, but
these loops are always acyclic. (viz. a “DAG” - a directed acyclic graph). There are no
obviously cyclic phenomena in natural language.

Why sheaves? By pointing out that natural language and biology can be described with
sheaves, it is hoped that this will prove better insights into their structure, and provide a
clear framework to think about the structure of such data.

For example, consider the normally vague idea of the “language graph”. What is this?
One has dueling notions: the graph of all sentences; the generative power of grammars.
Sheaves provide a clearer picture: the graph itself is the base space, while surface and deep
structure can be explored through sections.

It can be argued that orthodox corpus linguistics studies the sheaf of surface structure,
with especially strong focus on the stalks. Differences in the stalks reveal differences
between regional dialects. Much more interesting is that the corpus linguists have ana-
lyzed stalks to discover not just differences in socio-economic status, but even to discover
politically-motivated speech, truth and lack-thereof in journalism and news media.[15]

The orthodox corpus linguists are not interested in refining their collocations into a gen-
erative grammar. One does not obtain a generative model of how different speakers in
different socio-economic classes speak; corpus linguistics examples are just that: exam-
ples that are not further refined. By applying a pattern mining approach, the underlying
grammar can be discovered computationally. By viewing structure holistically, as a sheaf,
one can see ways in which this might be done.

Besides the sheaf of surface realizations studied by corpus linguists, there are several
different kinds of sheaves of grammatical structure. Each section is a grammatically valid
sentence, expressed as a tree or as a DAG (directed acyclic graph) of some sort, anno-
tated with additional information, based on the formalities of that particular grammatical
approach (dependency grammar, head-phrase-structure grammar, etc). The orthodox ap-
proach is to view the grammar as being the primary object of study. The sheaf approach
helps emphasize how that grammar was arrived at: distinct words were grouped into gram-
matical classes. Put differently, distinct stalks are recognized as being very similar, if not
identical, and are merged together to form a grammatical category; it is no longer individ-
ual words that link with one-another, but the grammatical classes.

Viewing language as a sheaf helps identify how one can automatically extract grammat-
ical classes: If one can judge two stalks as being sufficiently similar in some way, then one

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 30

can merge them into one, proceeding in this way to create a reduced, concentrated model
of language that captures it’s syntactic structure.

One can do even more: one can play off the differences in regional dialects, or differ-
ences due to social-economic classes, discovered by statistical means from a corpus, and
attach these to specific grammatical structures, identified from syntactic analysis. That is,
by seeing both activities: surface realizations and deeper structure as two slightly different
forms of “the same thing”, one can see-saw, lever ones way about, moving from one to the
other and back. Tools can be developed that do both, instead of just one or just the other.
One can actually unify into one, what seem to be very theories and approaches, and one
can develop the techniques to move between these theories. This seems to be a very big
win.

CLUSTERING MORPHISMS

The primary topic of this part is that the extraction of structure from data is more-or-less
a kind of morphism between sheaves. A “pseudo-morphism” might be an more appropriate
term, as the definition here will not be axiomatically precise.

There are several types of morphisms that are of interest. one kind keeps the base space
intact, but attempts to map one kind of section into another: for example, mapping sections
of n-grams into sections of dependency parses. This resembles the orthodox concept of
a morphism between sheaves. The other kind of morphism is one that attempts to re-
arrange the base space, by grouping together multiple stalks into one. This second kind of
morphism is the one discussed in this part. It is roughly termed a “clustering morphism”.

There are several kinds of clustering morphisms that are interesting. One was previously
illustrated. Starting with

−−−→
Mary⊗walked⊗

−−−→
home+

−−−→
Mary⊗ ran⊗

−−−→
home+

−−−→
Mary⊗drove⊗

−−−→
home

one wishes to deduce

−−−→
Mary⊗

(
walked + ran+drove

)
⊗
−−−→
home

This seems to be relatively straight-forward to accomplish, as it looks like a simple appli-
cation of the distributive law of multiplication over addition. It is perhaps deceptive, as it
presumes that the three words “walked”, “ran”, “drove” do not appear anywhere else in the
sheaf.

A different example is that of forcing diagonalization where there is none. Given a
structure such as

|Mary〉⊗ |walked〉+ |Adam〉⊗ |ran〉
one wishes to induce

(|Mary〉+ |Adam〉)⊗ (|walked〉+ |ran〉)

This resembles a grammar-school error: an inappropriate application of the distributive
law. But is it really? Part of the problem here is that the notation itself is biased: the
symbols ⊗ and + look like the symbols for multiplication and addition, and we are deeply
ingrained, from childhood - from grammar school, that multiplication distributes over ad-
dition, but not the other way around. By using these symbols, one introduces a prejudice
into one’s thinking; the prejudice suggests that one operation is manifestly legal, while the
other is dubious and requires lots of justification.

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 31

This prejudice can run very deeply: in data-mining software, if not in the theories them-
selves, the first operation might be hard-coded into the software, into the theory, and as-
sumed to be de facto correct. By contrast, the second relation seems to require data-mining,
and maybe lots of it: crunching immense, untold numbers of examples to arrive at the con-
clusion that such a diagonalization is valid. Perhaps reality is somewhere between these
two extremes: the first factorization should not be assumed, and, as a result, the second di-
agonalization might not be so hard to discover. Perhaps induction can be applied uniformly
to both cases.

Induction. The goal of machine learning in data science is the induction of the factoriza-
tion and diagonalization from a given dataset. Both examples given above are misleading,
because they ignore the fact that they are embedded in a much larger corpus of language.
How might these two cases be induced from first principles, ab initio, from nothing at all,
except for a bunch of examples?

On possibility is to start by looking for pair-wise correlations. This works: that is how
|Mary〉⊗ |walked〉 is discovered in the first place: these two words were collocated. Like-
wise, for |Adam〉⊗ |ran〉. But what about inducing diagonalization? Here, one observes
that Mary does lots of things, and so does Adam. Writing down the collocation stalk for
Mary, and the one for Adam should indicate that these two stalks are quite similar. How
can similarity be judged? The cosine distance, previously reviewed, is a plausible way to
start. One can legitimately conclude that Adam and Mary belong in the same grammatical
category. What about “walked” and “ran”? One can create a stalk for these two as well,
and it should not be hard to conclude, using either cosine distance, or something else, that
the two are quite similar.

Great. Now what? Just because Adam and Mary are similar, and “ran” and “walked”
are similar, this is still not quite enough to justify the diagonalization. After all, “Mary ran”
and “Adam walked” have not been observed; how can one justify that these will likely be
observed, which is the central claim that diagonalization is making?

The answer would need to be that certain cross-correlations are only weakly seen. De-
fine the set of named-things, and action-things, already discovered: names= {Adam,Mary}
while actions = {ran,walked}. Let the ¬ symbol denote “not”, so that ¬names is the set
of all things are not names, and ¬actions denote all things that are not actions. Consider
then the correlation matrix

actions ¬actions
names High Low
¬names Low n/a

The entry “High” means that a large amount of correlation is observed, while “Low”
means that little is observed. Correlation can be measured in many ways; mutual informa-
tion and Kullbeck-Liebler divergence are popular.

Why might this work? Well, this correlation matrix embodies the very meaning of
“diagonalization”: a matrix is diagonal, when the entries along the diagonal are large, and
the entries not on the diagonal are zero. Observing this structure then justifies writing
names⊗actions, which is exactly what one wanted to induce. Can one also validly claim
that (¬names)⊗ (¬actions)? Well, probably not. The correlation there might be low or
non-existent. It might be hard to compute, and, in the current context, its seems not to be
wanted.

Can one induce factorization in the same way? Factorization, as given above, seemed
“obvious”, but that was only due to the use of symbols that prejudiced one’s thinking.

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 32

Factorization is, in fact, every bit as non-obvious as diagonalization. The reason it seems
so obvious in the example was that the corpus “Mary walked home”, etc. did not include
any sentences about Adam, nor anything about “to the store”, “to work”, etc. Once these
are included, factorization starts to look a lot like diagonalization, if not exactly the same
thing. Inducing a subject-verb-object relationship can be done by means of correlation,
but is harder to depict, because the correlation is no longer a pair-wise matrix, but is 3D,
forming a cube, because three categories need to be compared: names, actions, and places,
where places = {home, tothestore, towork}. This is shown below.

places


actions ¬actions

names High Low
¬names Low n/a

¬places


actions ¬actions

names Low n/a
¬names n/a n/a

That is, one can induce a three-way relationship (x,y,z) whenever that relationship is
frequently seen, and all three of the relations (¬x,y,z), (x,¬y,z) and (x,y,¬z) are not seen.
This extends to 4-way relations, and so on.

There is one notable phenomenon that is not covered by the above: words that have
different meanings, but the same spelling, for example, “saw” or “fly” which are both
nouns and verbs. This complicates the approach above; this issue is returned to in a later
section, titled Polymorphism.

Related concept: Discrimination. Several comments are in order. The above presents
grammatical induction as a form of discrimination - binary discrimination, even, which is
considered to be a particularly simple form of learning. There are many available tech-
niques for this, and one can promptly fall into the examination of ROC curves, and the
like. It is important to note that what is being sketched here is the idea of discrimination
in the context of sheaves, and not the idea of binary discrimination as some panacea for
linguistics.

The above was also vague as to the form of correlation: how should it be done? Should it
literally be correlation, in the sense of probability theory? Should it be mutual information?
Something else? This is left intentionally vague: different measures of correlation are
possible. Some may produce better results than others. A general theoretical framework is
being sketched here; the quality of different algorithms is not assessed or presented. It is
up to the reader to experiment with different forms of correlation and discrimination.

Related concept: Clustering. The induction, described above, resembles the machine-
learning concept of clustering in several ways. There are also some strong differences, and
so this is worth reviewing. Two old and time-honored approaches to clustering are support
vector machines (SVM) and k-means clustering. The first relies explicitly on some sort
of vectorial representation for the data, while the second expects some sort of metric for
judging whether two points are similar or not. For the former, interpreting the stalks as the
feature vectors is sufficient, while for the latter, the cosine distance can fill the role of a
metric.

https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 33

These two approaches are sufficient to extract classes of things, such as names, places
and actions in the above example. The accuracy of the extracted categories is rarely ex-
cellent, but is certainly adequate enough to proceed to other stages. Except ... that’s it.
These clustering techniques stop there; they say nothing at all about inducing grammatical
relations. To induce grammatical relations, one also has to perform discrimination in some
way. One has to combine the results obtained from clustering, and then discriminate to
induce grammar.

Note that the discrimination step provides information about how good the clustering
was. Say, for example, that cosine distance was used, together with k-means clustering, to
obtain classes of words. Was this clustering “adequate”? That question can be answered
by examining the ROC curves obtained from a binary discrimination step. Different kinds
of clustering will present different ROC curves. This can be used as feedback for the clus-
tering step, so that one gets a recursive learning step, alternating between discrimination
and clustering.

This observation of recursion, of course, raises the question: can clustering and discrim-
ination be combined into one effective algorithm? Yes, they can.

Related concepts: neurlal nets, adagram. Besides binary discrimination, there are other
approaches. Approaches that are more sophisticated include decision trees and decision
forests. These two approaches treat the vectors as tables of input data, and then pick and
choose among the vector components deemed predictive.

x
x
foo

Why clustering? foo-bar
x
x
By contrast, the goal here is not just to talk about a graph G relative to a single A, but

relative to a huge number of different A’s. What’s more, the internal structure of these
A’s will continue to be interesting, and so is carried onwards. Finally, the act of merging
together multiple vertexes into one A may result in some of the existing edges being cut,
or new edges being created. The clustering operation applied to the graph alters the graph
structure. These considerations are what makes it convenient to abandon traditional graph
theory, and to replace it by the notion of sheaves and sections.

x
The above establishes a vocabulary, a means for talking about the clustering of similar

things on graphs. It does not suggest how to cluster. Without this vocabulary, it can be
very confusing to visualize and talk about what is meant by clustering on a graph. Its
worth reviewing some examples.

• In a social graph, a cluster might be a clique of friends. By placing these friends
into one group, the stalk allows you to examine how different groups interact with
one-another.

• In proteomic or genomic data, if one can group together similar proteins or genes
into clusters, one can accomplish a form of dimensional reduction, simplifying the
network model of the dataset. It provides a way to formalize network construction,
without the bad smell of ad-hoc simplifications.

• In linguistic data, the natural clustering is that of words that behave in a similar
syntactic fashion; such clusters are commonly called “grammatical classes” or

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 34

“parts of speech”. In particular, it allows one to visualize language as a graph. So:
consider, for example, the set of all dependency parses of all sentences in some
corpus, say Wikipedia. Each dependency parse is a tree; the vertexes are words,
and the edges are the dependencies. Taken as a graph, this is a huge graph, with
words connecting to other words, all over the place. Its not terribly interesting
in this raw state, because its overwhelmingly large. However, we might notice
that all sentences containing the word “dish” resemble all sentences containing
the word “plate”; that these two words always get used in a similar or the same
way. Grouping these two words together into one reduces the size of the graph by
one vertex. Aggressively merging similar words together can sharply shrink the
size of the graph to a manageable size. One gets something more: the resulting
graph can be understood as encapsulating the structure of the English language.

This last example is worth expanding on. Two things happen when the compressed graph is
created. First, that graph encodes the syntactic structure of the language: the links between
grammatical classes indicate how words can be arranged into grammatically correct sen-
tences. Second, the amount of compression applied can reveal different kinds of structures.
With extremely heavy compression, one might discover only the crudest parts of speech:
determiners, adjectives, nouns, transitive and intransitive verbs. Each of these classes are
distinct, because they link differently. However, if instead, a lot less compression is ap-
plied, then one can discover synonymous words: so, “plate” and “dish” might be grouped
together, possibly with “saucer”, but not with “cup”. Here, one is extracting a semantic
grouping, rather than a syntactic grouping.

So, the answer to “why clustering?” is that it allows information to be extracted from
a graph, and encoded in a useful, usable fashion. No attempt is made here to suggest how
to cluster; merely, that if an equivalence relation is available, and if it is employed wisely,
then one can construct quotient graphs that encode important relationships of the original,
raw graph.

TYPES

It is notationally awkward to have to write stalks in terms of the sets of vertexes that they
are composed of; it is convenient to instead replace each set by a symbol. The symbol will
be called a TYPE. As it happens, these types can be seen to be the same things occurring
in the study of type theory; the name is justified.

The core idea can be illustrated with Link Grammar as an example. The Link Grammar
disjuncts are one and the same thing as stalks. It is worth making this very explicit. A
subset of the Link Grammar English dictionary looks like this:

cat dog: D- & S+;
the a: D+;
ran: S-;

This states that “cat” and “dog” are both vertexes, and they are in the same stalk. That
stalk has two connectors: D- and S+, which encode the other stalks that can be connected
to. So, the D+ can be connected to the D- to form a link. The link has the form ({the, a},
{cat, dog}) and the connector symbols D+ and D- act as abbreviations for the vertex sets
that the unconnected end can connect to. The + and - symbols indicate a directionality:
to the right or to the left. The capture the notion that, in English, the word-order matters.
To properly explain the + and -, we should have to go back to the definition of a graph on
the very first page, and introduce the notion of left-right order among the vertices. Doing

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 35

so from the very beginning would do nothing but clutter up the presentation, so that is not
done. The reader is now invited to treat the initial definition of the graph as a monad: there
are additional details “under the covers”, but they are wrapped up and ignored, and only
the relevant bits are exposed. Perhaps the vertices had a color. Perhaps they had a name,
or a numerical weight; this is ignored. Here, we unwrap the idea that the vertices must be
organized in a left-right order. Its sufficient, for now, to leave it at that.

FIGURE 0.21. Three stalks and two typed links

The three stalks here encode a set of grammatically valid English language sentences.
Hooking together the S- and S+ connectors to form an S link, one obtains the sequence
[{the, a} {cat, dog} {ran}]. This can be used to generate grammatically valid sentences:
pick one word from each set, and one gets a valid sentence. Alternatively, this structure
can be taken to encode the sum-total knowledge about this toy language: it is a kind-of
graphical representation of the entire language, viewed as a whole.

Definition. Given a stalk S = (V,L), the CONNECTOR TYPE of L is a symbol that can be
used as a synonym for the set L. It serves as a short-hand notation for L itself. �

Just as in type theory, a type can be viewed a set. Yet, just as in type theory, this is the
wrong viewpoint: a type is better understood as expressing a property: it is an intensional,
rather than an extensional description. Formally, in the case of finite sets, this may feel like
splitting hairs. For an intuitive understanding, however, its useful to think of a type as a
property carried by an object, not just the class that the object can be assigned to.

Why types? Types are introduced here primarily as a convenience for working with stalks.
They are labels, but they can be useful. Re-examining the examples:

• In a social graph, one group of friends might be called “students” and another
group of friends might be called “teachers”. The class labels are useful for noting
the function and relationship of the different social groups.

• In a genetic regulatory network, sub-networks can be classified as "positive regu-
latory pathways" or "negative regulatory pathways" with respect to the activation
of a particular gene.

These examples suggest that the use of types is little more than a convenient labeling
system. In fact, more hay can be made here, as types interact strongly with category theory:
types are used to describe the internal language of monoidal categories. But this is a rather
abstract viewpoint, of no immediate short-term use. Suffice it to say that appearance of
types in grammatical analysis of a language is not accidental.

What kind of information do types carry? The above example oversimplifies the notion
of types, presenting them as a purely syntactic device. In practice, types also carry semantic
information. The amount of semantic information varies inversely to the broadness of the
type. In language, coarse-grained types (noun, verb) carry almost no semantic information.
Fine-grained types carry much more: a “transitive verb taking a particle and an indirect

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 36

object” is quite specific: it must be some action that can be performed on some object
using some tool in some fashion. An example would be “John sang a song to Mary on his
guitar”: there is a what, who and and how yoked together in the verb “sang”. The more
fine-grained the classification, the more semantic content is contained in it.

This suggests that the proper approach is hierarchical: a fine-grained clustering, that
captures semantic content, followed by a coarser clustering that erases much of this, leaving
behind only “syntactic” content.

PARSING

The introduction remarked that not every collection of seeds can be assembled in such
a way as to create a valid graph. This idea can be firmed up, and defined more carefully.
Generically, a valid assembly of seeds is called a parse, and the act of assembling them is
called parsing, which is done by parse algorithms. To illustrate the process, consider the
following two seeds:

v2 : {(v2,v1) ,(v2,v3)}
v3 : {(v3,v2)}

Represented graphically, these seeds are

FIGURE 0.22. Two unconnected seeds

The connector (half-edge) (v2,v3) appears with both polarities, and can be linked to-
gether to form a link. The connector (v2,v1) has nothing to connect to. Even after maxi-
mally linking these two seeds, one does not obtain a valid graph: the vertex v1 is missing
from the vertex-set of the graph, even though there is an edge ready to attach to it. This
provides an example of a failed parse. It is enough to add the seed v1 : {(v1,v2)} to convert
this into a successful parse. Adding this seed, and then attempting to maximally link it
results in a valid graph; the parse is successful.

FIGURE 0.23. Parsing is the creation of links

Note the minor change in notation: the colon is used as a separator, with the germ
appearing on the left, and set of connectors on the right. The relevance of this notational
change becomes more apparent, if we label the vertexes in a funny way: let v1 carry the
label “the”, and v2 carry the label “dog” and v3 carry the label “ran”. The failed parse is
meant to illustrate that “dog ran” is not a grammatically valid sentence, whereas “the dog
ran” is.

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 37

Converting these seeds to also enforce left-right word-order requires the notation

the: {(the, dog+)}
dog: {(dog, the-), (dog,ran+)}
ran: {(ran, dog-)}

This notation is verbose, and slightly confusing. Repeating the germ as the first vertex
in every connector is entirely unnecessary. Write instead:

the: { dog+ }
dog: { the-, ran+}
ran: { dog- }

The set-builder notation is unneeded, and perhaps slightly confusing. In particular, the
word “dog” has two connectors on it; both must be connected to obtain a valid parse. The
ampersand can be used to indicate the requirement that both connectors are required. This
notation will also be useful in the next section.

the: dog+ ;
dog: the- & ran+ ;
ran: dog- ;

This brings us almost back to the previous section, but not quite. Here, we are working
with seeds; previously we worked with stalks. Here, the connector type labels were not
employed. In real-world use-cases, using stalks and type labels is much more convenient.

This now brings us to a first draft of a parse algorithm. Given an input set of vertices, it
attempts to find a graph that is able to connect all of them.

(1) Provide a dictionary D consisting of a set of unconnected stalks.
(2) Input a set of vertices V = {v1,v2, · · · ,vk}.
(3) For each vertex in V , locate a stalk which contains that vertex in it’s germ.
(4) Attempt to connect all connectors in the selected stalks.
(5) If all connectors can be connected, the parse is successful; else the parse fails.
(6) Print the resulting graph. This graph can be described as a pair (V,E) with V the

input set of vertexes, and E the set of links obtained from fully connecting the
selected stalks.

The above algorithm is “generic”, and does not suggest any optimal strategy for the crucial
steps 3 or 4. It also omits discussion of any further constraints that might need to be
applied: perhaps the edges need to be directed; perhaps the resulting graph must be a
planar graph (no intersecting edges); perhaps the graph must be a minimum spanning tree;
perhaps the input vertexes must be arranged in linear order. These are additional constraints
that will typically be required in some specific application.

Why parsing? The benefit of parsing for the analysis of the structure of natural language
is well established. Thus, an example of parsing in a non-linguistic domain is useful.
Consider having used the above graph compression/vertex-edge clustering techniques to
obtain a collection of stalks that describe genomic interactions. This collection provides
the initial dictionary D. Now imagine a process where a certain specific set of genes are

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 38

associated with some particular trait or reaction. Is this a complete set? Can it be said that
their interactions are fully understood?

One way to answer these last two questions would be to apply the parse algorithm, using
the known dictionary, to see if a complete interaction network can be obtained. If so, then
this new specific gene-set fits the general pattern. If not, if a complete parse cannot be
found, then one strongly suspects that there remain one or more genes, yet undetermined,
that also play a role in the trait. To find these, one might examine the stalks that might have
been required to complete the parse: these will give hints as to the specific type of gene, or
style of interaction to search for.

Thus, parsing new gene expressions and pathways offers a way of discovering whether
they resemble existing, known pathways, or whether they are truly novel. If they seem
novel, parsing also gives strong hints as to where to look for any missing pieces or interac-
tions.

Is this really parsing? The above description of parsing is sufficiently different from
standard textbook expositions of natural language parsing that some form of an apology
needs to be written.

The first step is to observe that the presented algorithm is essentially a simplified, gen-
eralized variation of the Link Grammar parsing algorithm.[5] The generalization consists
in the removal of word-order and link-crossing constraints.

The second step is to observe that the theory of Link Grammar is more-or-less isomor-
phic to the theory of pregroup grammars[3] (see Wikipedia); the primary differences being
notational. The left-right directional Link Grammar connectors correspond to the left and
right adjoints in a pregroup. A Link Grammar disjunct (that is, a seed) corresponds to a se-
quence of types in a pregroup grammar. The correspondence is more-or-less direct, except
that link grammar is notationally simpler to work with.

The third step is to observe that the Link Grammar is a form of dependency gram-
mar. Although the original Link Grammar formulation uses undirected links, it is straight-
forward and unambiguous to mark up the links with head-dependent directional arrows.

The fourth step is to realize that dependency grammars (DG) and head-phrase-structure
grammars (HPSG) are essentially isomorphic. Given one, one can obtain the other in a
purely mechanistic way.

The final step is to realize that most introductory textbooks describe parsers for a
context-free grammar, and that, for general instructional purposes, such parsers are suffi-
cient to work with HPSG. The priamry issue with HPSG and context-free language parsers
is that they obscure the notion of linking together pieces; this is one reason why depen-
dency grammars are often favored: they make clear that it is the linkage between various
words that has a primary psychological role in the human understanding of language. It
should be noted that many researchers in the psychology of linguistics are particularly
drawn to the categorial grammars; these are quite similar to the pregroup grammars, and
are more closely related to Link Grammar than to the phrase-structure grammars.

POLYMORPHISM

Any given vertex may participate in two or more seeds, independently from one-another.
It is this statement that further sharpens the departure from naive graph theory. This is best
illustrated by a practical example.

Consider a large graph, constructed from a large corpus of English language sentences.
As subgraphs, it might contain the two sentences “A big fly landed on his nose” and “It

https://en.wikipedia.org/wiki/Pregroup_grammar

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 39

FIGURE 0.24. Polymorphism

This figure illustrates a polymorphic assignment for the word “fly”. It is split into two
parts, the first, a noun, classed with other nouns, showing labeled connectors to

determiners, adjectives, and a connector showing that nouns can act as the subject of a
verb. The second class shows labeled connectors to subjects and objects, as is appropriate
for transitive verbs. Underneath are the flattened raw seeds, showing the words “fly” and

“cat” and the myriad of connectors on them. The flattened seeds cannot lead to
grammatical linkages, as they mash together into one the connectors for different parts of

speech.

will fly home”. The vertex “fly” occurs as a noun (the subject, with dterminer and adjec-
tive) in one sentence, and a verb (with subject and object) in the other. Suppose that the
equivalence relation, described in the clustering section, also has the power to discern that
this one word should really be split into two, namely f lynoun and f lyverb, and placed into
two different stalks, namely, in the “noun” stalk in the first case, and the “verb” stalk in
the second. Recall that these two stalks must be different, because the kinds of connectors
that are allowed on a noun must necessarily be quite different from those on a verb. One is
then lead to the image shown in figure 0.24.

The point of the figure is to illustrate that, although the “base graph” may not distinguish
one variant of a vertex from another, it is important to discover, extract and represent this
difference. The concept of “polymorphism” applies, because the base vertex behaves as
one of several distinct types in practice. There are several ways the above diagram can be
represented textually. As before, the Link Grammar-style notation is used, as it is fairly
clear and direct. One representation would be to expose the polymorphism only in the
connectors, and not in the base vertex label:

fly: (DET- & ADJ- & SUBJ+) or (SUBJ- & OBJ+);

A different possibility is to promptly split the vertex label into two, and ignore the
subscript during the parsing stage:

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 40

fly.noun cat: (DET- & ADJ- & SUBJ+);
fly.verb walk: (SUBJ- & OBJ+);

Either way, the non-subscripted version of f ly behaves in a polymorphic fashion.
Note that the use of the notation “or” to disjoin the possibilities denotes a choice func-

tion, and not a boolean-or. That is, one can choose either one form, or the other; one cannot
choose both. During the parse, both possibilities need to be considered, but only one se-
lected in the end. This implies that at least some fragment of linear logic is at play, and not
boolean logic. (this should be expanded upon in future drafts).

Similar concept: part of speech. It is tempting to identify the connectors DET, ADJ,
SUBJ, OBJ in the diagrams above with “parts of speech”. This would be a mistake. In
conventional grammatical analysis, there are half-a-dozen or a dozen parts of speech that
are recognized: noun, verb, adjective, and so on. By contrast, these connector types in-
dicate a grammatical role. That is, the disjunct SUBJ- & OBJ+ indicates a word that
takes both a subject and an object: a transitive verb. That is, the disjunct is in essence a
fine-grained part of speech, indicating not only verb-ness, but the specific type of verb-ness
(transitive).

The Link Grammar English dictionary documents more than 100 connector types, these
are subtyped, so that approximately 500 connectors might be seen. These connectors, when
arranged into disjuncts, result in tens of thousands of disjuncts. That is, Link Grammar
defines tens of thousands of distinct “parts of speech”. The can be thought of as parts of
speech, but they are quite fine-grained, far more fine-grained than any text on grammar
might ever care to list.

If one uses a technique, such as MST parsing[16], and then extracts disjuncts, one
might observe more than 6 million disjuncts and 9 million seeds on a vocabulary of 140K
words. These are, again, in the above technical sense, just “parts of speech”, but they are
hyperfine-grained. The count is overwhelming. So, although it is techinically correct to
call them “parts of speech”, it is a conceptual error to think of a class that has six million
representatives as if it were a class with a dozen members.

Similar concept: skip-grams. The N-gram[11] and the more efficient skip-gram[17]
models of semantic analysis provide somewhat similar tools for understanding connec-
tivity, and differentiating different forms of connectivity. In a skip-gram model, one might
extract two skip-grams from the above example sentences: “a fly landed” and “it fly home”.
A clustering process, such as adagram or word2vec might be used to classify these two
strings into distinct clusters, categorizing one with other noun-like words, and the other
with verb-like words.

The N-gram or skip-gram technique works only for linear, sequenced data, which is
sufficient for natural language, but cannot be employed in a generic non-ordered graph-
ical setting. To make this clear: a seed representation for the above would be: “fly: a-
landed+” indicating that the word “a” (written as the connector “a-”) comes sequentially
before “fly”, while the word “landed” (written as the connector “landed+”) comes after.
The other phrase has the representation “fly: it- home+”. These two can now be employed
in a clustering algorithm, to determine whether they fall into the same, or into different
categories. If one treats the skip-grams, and the seeds as merely two different representa-
tions of the same data, then applying the same algorithm to either should give essentially
the same results.

The seed representation, however, is superior in two different ways. First, it can be
used for non-sequential data. Second, by making clear the relationship between the vertex

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 41

and its connectors, the connectors can be treated as “additional data”, tagging the vertex,
carrying additional bits of information. That additional information is manifested from
the overall graph structure, and is explicit. By contrast, untagged N-grams or untagged
skip-grams leave all such structure implicit and hidden.

Polymorphism and semantics. The concept of polymorphism introduced above lays a
foundation for semantics, for extracting meaning from graphs. This is already hinted at by
the fact that any English-language dictionary will provide at least two different definitions
for “fly”: one tagged as a noun, the other as a verb. The observation of hyperfine-grained
parts of speech can push this agressively farther.

In a modern corpus of English, one might expect to observe the seeds “apple: green-
” and “apple: iphone+”. The disjuncts “green-” and “iphone+” can be interpreted as a
kind-of tag on the word “apple”. Since there are exactly two tags in this example, they
can be viewed as supplying exactly one bit of additional information to the word “apple”.
Effectively, a single apple has been split into two distinct apples. Are they really distinct,
however? This can only be judged on the basis of some clustering algorithm that can assign
tagged words to classes. Even very naive, unsophisticated algorithms might be expected to
classify these two different kinds of apple into different classes; the extra bit of information
carried by the disjunct is a bit of actual, usable information.

To summarize: the arrangement of vertexes into polymorphic seeds and sections enables
the vertexes to be tagged with extra information. The tags are the connectors themselves:
thier presence or absence carries information. That extra information can be treated as
“semantic information”, identifying different types or kinds, rather than as purely syntactic
information about arrangments and relationships.

CONCLUSION

This document presents a way of thinking about graphs that allows them to be decom-
posed into constituent parts fairly easily, and then brought together and reassembled in a
coherent, syntactically correct fashion. It does so without having to play favorites among
competing algorithmic approaches and scoring functions. It makes only one base assump-
tion: that knowledge can be extracted at a symbolic level from pair-wise relationships
between events or objects.

It touches briefly, all too briefly, on several closely-related topics, such as the applica-
tion of category theory and type theory to the analysis of graph structure. These topics
could be greatly expanded upon, possibly clarifying much of this content. It is now known
to category theorists that there is a close relationship between categories, the internal lan-
guages that they encode, and that these are reflections of one another, reflecting through
a theory of types. A reasonable but incomplete reference for some of this material is the
HoTT book. It exposes types in greater detail, but does not cover the relationship between
internal languages, parsing, and the modal logic descriptions of parsing. It is possible that
there are texts in proof theory that cover these topics, but I am not aware of any.

This is a bit unfortunate, since I feel that much or most of what is written here is “well
known” to computational proof theorists; unfortunately, that literature is not aimed at the
data-mining and machine-learning crowd that this document tries to address. Additions,
corrections and revisions are welcomed.

SHEAVES: A TOPOLOGICAL APPROACH TO BIG DATA 42

REFERENCES

[1] Daniel Sleator and Davy Temperley., Parsing English with a Link Grammar, Tech. rep., Carnegie Mel-
lon University Computer Science technical report CMU-CS-91-196, 1991, URL http://arxiv.org/
pdf/cmp-lg/9508004.

[2] Bob Coecke, “Quantum Links Let Computers Read”, New Scientist, 2010, URL http://www.cs.ox.
ac.uk/people/bob.coecke/NewScientist.pdf.

[3] Dimitri Kartsaklis and Mehrnoosh Sadrzadeh, “A Study of Entanglement in a Categorical Framework of
Natural Language”, Proceedings Quantum Physics and Logic, Electronic Proceedings in Theoretical Com-
puter Science, 172, 2014, pp. 249–260, URL https://arxiv.org/abs/1405.2874.

[4] John C. Baez and Mike Stay, “Physics, Topology, Logic and Computation: A Rosetta Stone”,
Arxiv/abs/09030340, 2009, URL http://math.ucr.edu/home/baez/rosetta.pdf.

[5] Daniel D. Sleator and Davy Temperley, “Parsing English with a Link Grammar”, in Proc. Third Interna-
tional Workshop on Parsing Technologies, 1993, pp. 277–292, URL http://www.cs.cmu.edu/afs/
cs.cmu.edu/project/link/pub/www/papers/ps/LG-IWPT93.ps.

[6] Hoifung Poon and Pedro Domingos, “Unsupervised Semantic Parsing”, in Proceedings of the 2009 Confer-
ence on Empirical Methods in Natural Language Processing, Association for Computational Linguistics,
Singapore, 2009, pp. 1–10, URL http://www.aclweb.org/anthology/D09-1001.

[7] J. Lambek, “On the calculus of syntactic types”, in Structure of Language and its Mathematical Aspects,
America Methematical Society, 1961, pp. 166–178.

[8] Solomon Marcus, Algebraic Linguistics; Analytical Models, 1967, URL https://monoskop.
org/images/2/26/Marcus_Solomon_editor_Algebraic_Linguistics_Analytical_
Models_1967.pdf.

[9] Dimitri Kartsaklis, et al., “Reasoning about Meaning in Natural Language with Compact Closed Categories
and Frobenius Algebras”, in Logic and Algebraic Structures in Quantum Computing, Cambridge Univer-
sity Press, 2013, URL https://www.cs.ox.ac.uk/files/5468/sadrzadeh_kartsaklis.
pdf.

[10] Mati Pentus, “Lambek Calculus and Formal Grammars”, American Mathematical Society Translations,
1998, URL http://lpcs.math.msu.su/~pentus/ftp/papers/ams.pdf.

[11] Ronald Rosenfeld, “A Maximum Entropy Approach to Adaptive Statistical Language Modeling”, Computer
Speech & Language, 10, 1996, pp. 187–228, URL https://www.cs.cmu.edu/~roni/papers/
me-csl-revised.pdf.

[12] Robert B. Ash, Information Theory, Dover Publications, 1965.
[13] David Eisenbud and Joe Harris, The Geometry of Schemes, Springer, 2000.
[14] Saunders Mac Lane and Ieke Moerdijk, Sheaves in Geometry and Logic, Springer, 1992.
[15] Bill Louw, “Truth, literary worlds and devices as collocation”, in Language and Computers, Corpora in

the Foreign Language Classroom, edited by Luis Quereda Encarnación Hildalgo and Juan Santana, 2007,
pp. 329–362, URL https://www.academia.edu/843973/Truth_literary_worlds_and_
devices_as_collocation.

[16] Deniz Yuret, Discovery of Linguistic Relations Using Lexical Attraction, PhD thesis, MIT, 1998, URL
http://www2.denizyuret.com/pub/yuretphd.html.

[17] David Guthrie, et al., “A Closer Look at Skip-gram Modelling”, Proceedings of the Fifth international
Conference on Language Resources and Evaluation, 2006, URL https://homepages.inf.ed.ac.
uk/ballison/pdf/lrec_skipgrams.pdf.

http://arxiv.org/pdf/cmp-lg/9508004
http://arxiv.org/pdf/cmp-lg/9508004
http://www.cs.ox.ac.uk/people/bob.coecke/NewScientist.pdf
http://www.cs.ox.ac.uk/people/bob.coecke/NewScientist.pdf
https://arxiv.org/abs/1405.2874
http://math.ucr.edu/home/baez/rosetta.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/link/pub/www/papers/ps/LG-IWPT93.ps
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/link/pub/www/papers/ps/LG-IWPT93.ps
http://www.aclweb.org/anthology/D09-1001
https://monoskop.org/images/2/26/Marcus_Solomon_editor_Algebraic_Linguistics_Analytical_Models_1967.pdf
https://monoskop.org/images/2/26/Marcus_Solomon_editor_Algebraic_Linguistics_Analytical_Models_1967.pdf
https://monoskop.org/images/2/26/Marcus_Solomon_editor_Algebraic_Linguistics_Analytical_Models_1967.pdf
https://www.cs.ox.ac.uk/files/5468/sadrzadeh_kartsaklis.pdf
https://www.cs.ox.ac.uk/files/5468/sadrzadeh_kartsaklis.pdf
http://lpcs.math.msu.su/~pentus/ftp/papers/ams.pdf
https://www.cs.cmu.edu/~roni/papers/me-csl-revised.pdf
https://www.cs.cmu.edu/~roni/papers/me-csl-revised.pdf
https://www.academia.edu/843973/Truth_literary_worlds_and_devices_as_collocation
https://www.academia.edu/843973/Truth_literary_worlds_and_devices_as_collocation
http://www2.denizyuret.com/pub/yuretphd.html
https://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf
https://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf

	Intro
	Sections
	Why sections?
	Example: Biochemical reaction type
	Similar concept: Link Grammar
	Similar concept: lambda notation
	Similar concept: tensor algebra
	Similar concept: Lambek Calculus
	Similar concept: history and Bayesian inference

	Quotienting
	Example of similarity
	Quotienting
	Graph quotients
	Stalks

	Sheaves
	Example: collocations
	Are projections useful?
	Visualizing Sheaves
	Feature Vectors
	Stalk fields and vector fields
	Presheaves
	Gluing axioms
	Does this really work?
	Cohomology
	Why sheaves?

	clustering morphisms
	Induction
	Related concept: Discrimination
	Related concept: Clustering
	Related concepts: neurlal nets, adagram.
	Why clustering?

	Types
	Why types?
	What kind of information do types carry?

	Parsing
	Why parsing?
	Is this really parsing?

	Polymorphism
	Similar concept: part of speech
	Similar concept: skip-grams
	Polymorphism and semantics

	Conclusion
	References

